首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Research on connected vehicle environment has been growing rapidly to investigate the effects of real-time exchange of kinetic information between vehicles and road condition information from the infrastructure through radio communication technologies. A fully connected vehicle environment can substantially reduce the latency in response caused by human perception-reaction time with the prospect of improving both safety and comfort. This study presents a dynamical model of route choice under a connected vehicle environment. We analyze the stability of headways by perturbing various factors in the microscopic traffic flow model and traffic flow dynamics in the car-following model and dynamical model of route choice. The advantage of this approach is that it complements the macroscopic traffic assignment model of route choice with microscopic elements that represent the important features of connected vehicles. The gaps between cars can be decreased and stabilized even in the presence of perturbations caused by incidents. The reduction in gaps will be helpful to optimize the traffic flow dynamics more easily with safe and stable conditions. The results show that the dynamics under the connected vehicle environment have equilibria. The approach presented in this study will be helpful to identify the important properties of a connected vehicle environment and to evaluate its benefits.  相似文献   

2.
To increase our understanding of the operations of traffic system, a visco‐elastic traffic model was proposed in analogy of non‐Newtonian fluid mechanics. The traffic model is based on mass and momentum conservations, and includes a constitutive relation similar to that of linear visco‐elastic fluids. The further inclusion of the elastic effect allows us to describe a high‐order traffic model more comprehensively because the use of relaxation time indicates that vehicle drivers adjust their time headway in a reasonable and safe range. The self‐organizing behaviour is described by introducing the effects of pressure and visco‐elasticity from the point of view in fluid mechanics. Both the viscosity and elasticity can be determined by using the relaxation time and the traffic sound speed. The sound speed can be approximately represented by the road operational parameters including the free‐flow speed, the jam density, and the density of saturation if the jam pressure in traffic flows is identical to the total pressure at the flow saturation point. A linear stability analysis showed that the traffic flow should be absolutely unstable for disturbances with short spatial wavelengths. There are two critical points of regime transition in traffic flows. The first point happens at the density of saturation, and the second point occurs at a density relating on the sound speed and the fundamental diagram of traffic flows. By using a triangular form flow–density relation, a numerical test based on the new model is carried out for congested traffic flows on a loop road without ramp effect. The numerical results are discussed and compared with the result of theoretical analysis and observation data of traffic flows. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Abstract

In response to an initiative to develop an advanced traffic information system in Bangkok, this paper explores practical guidelines for the optimal location of road sensors, such that the data collected on spot speeds reflect an entire link's average speed. In particular, the authors use microsimulation software to investigate optimal detector locations, using the sum of squared errors and root mean squared errors. The analysis hypothesizes that road segments are 0.4, 0.6, 0.8, 1.0, 2.0 and 3.0 km in length and are specially designed to replicate typical arterial streets in Bangkok. The results show that a single detector location can produce good estimates of link speed only for segments that are shorter than 1.0 km. For distances of 1.0 km or more, the results suggest that two detectors be used for good link speed estimates under all traffic conditions.  相似文献   

4.
Traffic flow propagation stability is concerned about whether a traffic flow perturbation will propagate and form a traffic shockwave. In this paper, we discuss a general approach to the macroscopic traffic flow propagation stability for adaptive cruise controlled (ACC) vehicles. We present a macroscopic model with velocity saturation for traffic flow in which each individual vehicle is controlled by an adaptive cruise control spacing policy. A nonlinear traffic flow stability criterion is investigated using a wavefront expansion technique. Quantitative relationships between traffic flow stability and model parameters (such as traffic flow and speed, etc.) are derived for a generalized ACC traffic flow model. The newly derived stability results are in agreement with previously derived results that were obtained using both microscopic and macroscopic models with a constant time headway (CTH) policy. Moreover, the stability results derived in this paper provide sufficient and necessary conditions for ACC traffic flow stability and can be used to design other ACC spacing policies.  相似文献   

5.
Few studies have explored, to date, the issue of the monetary valuation of non-fatal injuries caused by road traffic accidents. The present paper seeks to raise interest in this question and to estimate, by contingent valuation, French households’ willingness-to-pay (WTP) to improve their road safety level and reduce their risk of non-fatal injuries following a road accident. More precisely, a Tobit and a type-II Tobit model were estimated to identify factors for WTP. The results highlighted the significant positive influence of injury severity on WTP. Experience of road traffic accidents seemed to play an important role, positively influencing valuation of non-fatal injury.  相似文献   

6.
Many residents are disturbed by road traffic noise which needs to be controlled and managed. The noise map is a helpful and important tool for noise management and acoustical planning in urban areas. However, the static noise map is not sufficient for evaluating noise annoyance at different temporal periods. It is necessary to develop the dynamic noise map or the noise spatiotemporal distribution. In this study, a method about urban road traffic noise spatiotemporal distribution mapping is proposed to obtain the representative road traffic noise maps of different periods. This method relies on the proposed noise spatiotemporal distribution model with two time-dependent variables - traffic density and traffic speed, and the spatiotemporal characteristics derived from multisource data. There are three steps in the method. First, the urban road traffic noise spatiotemporal distribution model is derived from the law of sound propagation. Then, the temporal characteristics are extracted from traffic flow detecting data and E-map road segment speed data by the outlier detection analysis. Finally, the noise distributions corresponding to different periods are calculated by an efficient algorithm which can save 90% above of the computing time. Moreover, a validation experiment was conducted to evaluate the accuracy of the proposed method. There is only 2.26-dB[A] mean absolute error that is within an acceptable range, which shows that the method is effective.  相似文献   

7.
Autonomous vehicles have the potential to improve link and intersection traffic behavior. Computer reaction times may admit reduced following headways and increase capacity and backwards wave speed. The degree of these improvements will depend on the proportion of autonomous vehicles in the network. To model arbitrary shared road scenarios, we develop a multiclass cell transmission model that admits variations in capacity and backwards wave speed in response to class proportions within each cell. The multiclass cell transmission model is shown to be consistent with the hydrodynamic theory. This paper then develops a car following model incorporating driver reaction time to predict capacity and backwards wave speed for multiclass scenarios. For intersection modeling, we adapt the legacy early method for intelligent traffic management (Bento et al., 2013) to general simulation-based dynamic traffic assignment models. Empirical results on a city network show that intersection controls are a major bottleneck in the model, and that the legacy early method improves over traffic signals when the autonomous vehicle proportion is sufficiently high.  相似文献   

8.
The early warning of incidents on urban arterial roads in a congested city can reduce delay, accidents and pollutant emission. Freeway incident detection systems implemented in recent years may not be suitable for arterial incidents. Arterial incident detection is more difficult. The traffic flow on an arterial road is not conserved from the upstream end of a road link to the downstream end because urban traffic does turn in and out of side‐streets, car‐parks and local residences. Roadside friction such as kerbside parking and shopping traffic also tends to create apparent incidents which are in fact frequent and normal events. This paper develops a definition for an arterial incident and describes a case study on an arterial road in Melbourne, Australia. The study shows that detectors upstream of an incident are more useful for incident detection than downstream detectors. It also identifies occupancy and speed as the appropriate parameters to characterise and detect arterial incidents.  相似文献   

9.
Frequent lane-changes in highway merging, diverging, and weaving areas could disrupt traffic flow and, even worse, lead to accidents. In this paper, we propose a simple model for studying bottleneck effects of lane-changing traffic and aggregate traffic dynamics of a roadway with lane-changing areas. Based on the observation that, when changing its lane, a vehicle affects traffic on both its current and target lanes, we propose to capture such lateral interactions by introducing a new lane-changing intensity variable. With a modified fundamental diagram, we are able to study the impacts of lane-changing traffic on overall traffic flow. In addition, the corresponding traffic dynamics can be described with a simple kinematic wave model. For a location-dependent lane-changing intensity variable, we discuss kinematic wave solutions of the Riemann problem of the new model and introduce a supply–demand method for its numerical solutions. With both theoretical and empirical analysis, we demonstrate that lane-changes could have significant bottleneck effects on overall traffic flow. In the future, we will be interested in studying lane-changing intensities for different road geometries, locations, on-ramp/off-ramp flows, as well as traffic conditions. The new modeling framework could be helpful for developing ramp-metering and other lane management strategies to mitigate the bottleneck effects of lane-changes.  相似文献   

10.
It is generally accepted that compliance behavior is affected by many factors. The purpose of this study is to investigate the effects of diverse factors on drivers’ guidance compliance behaviors under road condition information shown on graphic variable message sign (VMS), and based on this to find out a better information release mode. The involved data were obtained from questionnaire survey, and ordinal regression was used to analyze the casual relation between guidance compliance behavior and its influencing factors. Based on an overall analysis of conditions in driver’s route choice, an accurate method was proposed to calculate the compliance rate. The model testing information indicated that ordinal regression model with complementary log–log being the link function was appropriate to quantify the relation between the compliance rate and the factors. The estimation results showed that age, driving years, average annual mileage, monthly income, driving style, occupation, the degree of trust in VMS, the familiarity with road network and the route choice style were significant determinants of guidance compliance behavior. This paper also compared two different guidance modes which were ordinary guidance mode (M1) and predicted guidance mode (M2) through simulation. The average speed fluctuations and average travel time supported that M2 had better effect in improving traffic flow and balancing traffic load and resource. Some detailed suggestions of releasing guidance information were proposed with the explanation by flow-density curve and variation of traffic flows. These findings are the foundation to design and improve guidance systems by assessing guidance effect and modifying guidance algorithm.  相似文献   

11.
In traffic flow with naturalistic driving only, stimulus information pre-dominantly comes from the preceding vehicles with drivers occasionally responding to the following vehicles through the inspection of rear-view mirrors. Such one-sided information propagation may potentially be altered in future connected vehicle environment. This brings new motivations of modeling vehicle dynamics under bi-directional information propagation. In this study, stemming from microscopic bi-directional car-following models, a continuum traffic flow model is put forward that incorporates the bi-directional information impact macroscopically but can still preserve the anisotropic characteristics of traffic flow and avoid non-physical phenomenon such as wrong-way travels. We then analyze the properties of the continuum model and respectively illustrate the condition that guarantees the anisotropy, eradicates the negative travel speed, preserves the traveling waves and keeps the linear stability. Through a series of numerical experiments, it is concluded that (1) under the bi-directional looking context only when the backward weight ratio belongs to an appropriate range then the anisotropic property can be maintained; (2) forward-propagating traffic density waves and standing waves emerge with the increasing consideration ratio for backward information; (3) the more aggressive driving behaviors for the forward direction can delay the backward-propagating and speed up the forward-propagating of traffic density waves; (4) positive holding effect and negative pushing effect of backward looking can also be observed under different backward weight ratios; and (5) traffic flow stability varies with different proportion of backward traffic information contribution and such stability impact is sensitive to the initial traffic density condition. This proposed continuum model may contribute to future development of traffic control and coordination in future connected vehicle environment.  相似文献   

12.
Big data from floating cars supply a frequent, ubiquitous sampling of traffic conditions on the road network and provide great opportunities for enhanced short-term traffic predictions based on real-time information on the whole network. Two network-based machine learning models, a Bayesian network and a neural network, are formulated with a double star framework that reflects time and space correlation among traffic variables and because of its modular structure is suitable for an automatic implementation on large road networks. Among different mono-dimensional time-series models, a seasonal autoregressive moving average model (SARMA) is selected for comparison. The time-series model is also used in a hybrid modeling framework to provide the Bayesian network with an a priori estimation of the predicted speed, which is then corrected exploiting the information collected on other links. A large floating car data set on a sub-area of the road network of Rome is used for validation. To account for the variable accuracy of the speed estimated from floating car data, a new error indicator is introduced that relates accuracy of prediction to accuracy of measure. Validation results highlighted that the spatial architecture of the Bayesian network is advantageous in standard conditions, where a priori knowledge is more significant, while mono-dimensional time series revealed to be more valuable in the few cases of non-recurrent congestion conditions observed in the data set. The results obtained suggested introducing a supervisor framework that selects the most suitable prediction depending on the detected traffic regimes.  相似文献   

13.
In this paper, we propose an extended car-following model to study the influences of the driver’s bounded rationality on his/her micro driving behavior, and the fuel consumption, CO, HC and NOX of each vehicle under two typical cases, where Case I is the starting process and Case II is the evolution process of a small perturbation. The numerical results indicate that considering the driver’s bounded rationality will reduce his/her speed during the starting process and improve the stability of the traffic flow during the evolution of the small perturbation, and reduce the total fuel consumption, CO, HC and NOX of each vehicle under the above two cases.  相似文献   

14.
Using a stochastic cellular automaton model for urban traffic flow, we study and compare Macroscopic Fundamental Diagrams (MFDs) of arterial road networks governed by different types of adaptive traffic signal systems, under various boundary conditions. In particular, we simulate realistic signal systems that include signal linking and adaptive cycle times, and compare their performance against a highly adaptive system of self-organizing traffic signals which is designed to uniformly distribute the network density. We find that for networks with time-independent boundary conditions, well-defined stationary MFDs are observed, whose shape depends on the particular signal system used, and also on the level of heterogeneity in the system. We find that the spatial heterogeneity of both density and flow provide important indicators of network performance. We also study networks with time-dependent boundary conditions, containing morning and afternoon peaks. In this case, intricate hysteresis loops are observed in the MFDs which are strongly correlated with the density heterogeneity. Our results show that the MFD of the self-organizing traffic signals lies above the MFD for the realistic systems, suggesting that by adaptively homogenizing the network density, overall better performance and higher capacity can be achieved.  相似文献   

15.
The coordinated development of city traffic and environment is a key research content in traffic field in twenty-first Century. Among them, road section environmental traffic capacity analysis is one of the important research issues. It can provide solid theoretical basis and reliable data support for road network traffic optimization control, road traffic pollution control and city traffic structure optimization. This paper analyzed main factors which impacted environmental traffic capacity from two aspects, including road capacity constraint conditions and road traffic pollution control constraint conditions. Then, road section environmental traffic capacity optimization model was established, and method of improved augmented Lagrange function was used to solve the model. Case study showed that, (1) The environmental traffic capacity optimal model and methodology were effective; (2) In order to ensure road section environmental traffic capacity greater than (or equal to) road capacity, some measures could be taken including adjusting motor vehicle type proportion as well as improving emission characteristics of motor vehicles exhausting pollutants.  相似文献   

16.
Severe traffic congestion in and around many cities across the world has resulted in programmes of extensive road building and other capacity increasing projects. But traffic congestion has often not fallen in the long run and neither has journey speed increased. Demand for peak period road travel, particularly by car, has grown so strongly that increases in road capacity have been quickly matched by increased road use. This paper develops a model of a road network characterised by insatiable road passenger (car and bus) demand. The model parameters are calibrated on a typical urban road network, and a number of simulations conducted to determine social welfare after the introduction of a road capacity constraint into the optimisation process. The empirical results have an important policy implication for the evaluation of projects that increase road capacity, namely that standard methods of cost-benefit analysis may tend to overestimate the net benefits of such projects by a significant amount. Although the model is developed in the context of roads and road traffic congestion, it could also be applied to air travel.  相似文献   

17.
Sviden  Ove 《Transportation》1990,17(3):231-237
Road Transport Informatics is being developed to improve road transport. Telecommunication links will connect microcomputers in vehicles with roadside beacons and traffic control centers. Drivers can get better information and guidance en route. If these functions are charged as services rather than sold as products, a better traffic can be obtained. This can improve traffic safety, efficiency and the environment.  相似文献   

18.
Short-term traffic flow prediction is an integral part in most of Intelligent Transportation Systems (ITS) research and applications. Many researchers have already developed various methods that predict the future traffic condition from the historical database. Nevertheless, there has not been sufficient effort made to study how to identify and utilize the different factors that affect the traffic flow. In order to improve the performance of short-term traffic flow prediction, it is necessary to consider sufficient information related to the road section to be predicted. In this paper, we propose a method of constructing traffic state vectors by using mutual information (MI). First, the variables with different time delays are generated from the historical traffic time series, and the spatio-temporal correlations between the road sections in urban road network are evaluated by the MI. Then, the variables with the highest correlation related to the target traffic flow are selected by using a greedy search algorithm to construct the traffic state vector. The K-Nearest Neighbor (KNN) model is adapted for the application of the proposed state vector. Experimental results on real-world traffic data show that the proposed method of constructing traffic state vector provides good prediction accuracy in short-term traffic prediction.  相似文献   

19.
Intelligent transport systems provide various means to improve traffic congestion in road networks. Evaluation of the benefits of these improvements requires consideration of commuters’ response to reliability and/or uncertainty of travel time under various circumstances. Various disruptions cause recurrent or non-recurrent congestion on road networks, which make road travel times intrinsically fluctuating and unpredictable. Confronted with such uncertain traffic conditions, commuters are known to develop some simple decision-making process to adjust their travel choices. This paper represents the decision-making process involved in departure-time and route choices as risk-taking behavior under uncertainty. An expected travel disutility function associated with commuters’ departure-time and route choices is formulated with taking into account the travel delay (due the recurrent congestion), the uncertainty of travel times (due to incident-induced congestion) and the consequent early or late arrival penalty. Commuters are assumed to make decision on the departure-time and route choices on the basis of the minimal expected travel disutility. Thus the network will achieve a simultaneous route and departure-time user equilibrium, in which no commuter can decrease his or her expected disutility by unilaterally changing the route or departure-time. The equilibrium is further formulated as an equivalent nonlinear complementarity problem and is then converted into an unconstrained minimization problem with the use of a gap function suggested recently. Two algorithms based on the Nelder–Mead multidimensional simplex method and the heuristic route/time-swapping approach, are adapted to solve the problem. Finally, numerical example is given to illustrate the application of the proposed model and algorithms.  相似文献   

20.
Winter road maintenance (WRM) has been shown to have significant benefits of improving road safety and reducing traffic delay caused by adverse weather conditions. It has also been suggested that WRM is also beneficial in terms of reducing vehicular air emissions and fuel consumptions because snow and ice on road surface often cause the drivers to reduce their vehicle speeds or to switch to high gears, thus decreasing fuel combustion efficiency. However, there has been very limited information about the underlying relationship, which is important for quantifying this particular benefit of a winter road maintenance program. This research is focused on establishing a quantitative relationship between winter road surface conditions and vehicular air emissions. Speed distribution models are developed for the selected Ontario highways using data from 22 road sites across the province of Ontario, Canada. The vehicular air emissions under different road surface conditions are calculated by coupling the speed models with the engine emission models integrated in the emission estimation model - MOVES. It was found that, on the average, a 10% improvement in road surface conditions could result in approximately 0.6–2% reduction in air emissions. Application of the proposed methodology is demonstrated through a case study to analyse the air emission and energy consumption effects under specific weather events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号