首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 0 毫秒
1.
This paper presents an integrated framework for effective coupling of a signal timing estimation model and dynamic traffic assignment (DTA) in feedback loops. There are many challenges in effectively integrating signal timing tools with DTA software systems, such as data availability, exchange format, and system coupling. In this research, a tight coupling between a DTA model with various queue‐based simulation models and a quick estimation method Excel‐based signal control tool is achieved and tested. The presented framework design offers an automated solution for providing realistic signal timing parameters and intersection movement capacity allocation, especially for future year scenarios. The framework was used to design an open‐source data hub for multi‐resolution modeling in analysis, modeling and simulation applications, in which a typical regional planning model can be quickly converted to microscopic traffic simulation and signal optimization models. The coupling design and feedback loops are first demonstrated on a simple network, and we examine the theoretically important questions on the number of iterations required for reaching stable solutions in feedback loops. As shown in our experiment, the current coupled application becomes stable after about 30 iterations, when the capacity and signal timing parameters can quickly converge, while DTA's route switching model predominately determines and typically requires more iterations to reach a stable condition. A real‐world work zone case study illustrates how this application can be used to assess impacts of road construction or traffic incident events that disrupt normal traffic operations and cause route switching on multiple analysis levels. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Work zones exist widely on urban arterials in the cities that are undergoing road construction or maintenance. However, the existing studies on arterial work zones are very limited, especially on the work zones at urban intersections, although they have a severe negative impact on the urban traffic system. For the first time, this study focuses on how work zones reduce intersection capacity. A type of widely observed work zone, the straddling work zone that straddles on a road segment and an intersection, is studied. A linear regression model and a multiplicative model suggested by Highway Capacity Manual are proposed respectively to determine the saturation flow rate of the signal intersection with the straddling work zone. The data of 22 straddling work zones are collected and used to evaluate the performances of the proposed models. The results display that the linear regression model outperforms the multiplicative model suggested by Highway Capacity Manual. The study also reveals that reducing approach (or exit) lanes and the mixture of motor vehicles and non‐motor vehicles (and pedestrians) can significantly decrease the capacity of the intersection with straddling work zone. Therefore, in setting a straddling work zone, workers should try to ensure that the intersection approach and exit are unobstructed and set a separation for non‐motors and pedestrians to avoid mixed traffic flow. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Lane closures due to highway work zones present many challenges to the goal of ensuring smooth traffic operations and a safe environment for both drivers and workers. Late merge behavior at a work zone closure is a dangerous behavior that impacts the traffic conflicts upstream of work zone closures. This paper analyzes the safety impacts of using a signalized lane control strategy at the work zone merge points. To achieve the objective of this research, a field study has been conducted at a highway work zone to collect traffic and driver behavior data, and a two-stage, simulation-based approach is used to analyze the safety impacts of implementing a signalized lane merge control strategy at the studied work zone. In the first stage, micro-simulation models are developed and calibrated based on field data to generate vehicle trajectories. In the second stage, the U.S. Federal Highway Administration’s Surrogate Safety Assessment Model is employed to identify potential conflicts under different traffic conditions. The paper concludes that a proposed signal control device could significantly reduce lane-change conflicts at work zone merge points. In addition, recommendations on the signal cycle length and timing splits are provided.  相似文献   

4.
This paper explores at the planning level the benefits of coordinating tram movements and signal timings at controlled intersections. Although trams may have dedicated travel lanes, they mostly operate in a mixed traffic environment at intersections. To ensure tram progression, pre-set signal timings at intersections are adjusted by activating Transit Signal Priority (TSP) actions, which inevitably add delays to the auto traffic. A mixed integer program is proposed for jointly determining tram schedules for a single tram line and modifying signal timings at major controlled intersections. The objective is to minimize the weighted sum of the total tram travel time and TSP’s negative impacts on other traffic. A real-world case study of Line 5 of the Shenyang Hunnan Modern Tramway shows that by extending the dwell time or link travel time we can significantly reduce the TSP’s negative impacts on the auto traffic while only slightly increasing tram travel times.  相似文献   

5.
In the past, two‐way left‐turn lane (TWLTL) median treatments have been frequently used in Florida to inexpensively improve traffic and safety performances. In order to identify factors that may have significant impacts on safety operations in TWLTL sections and to identify TWLTL locations that present existing and future safety concerns, a research project was carried out and results are summarized in the paper. In the research, a three‐year crash history database with crashes and section characteristics from a total of 1688 TWLTL sections all over Florida was developed and used. A negative binomial regression model was developed to determine the statistical relationship between the number of crashes per mile per year and several variables such as traffic volume, access density, posted speed, and number of lanes. In regard to the methodology, in order to identify locations with safety concerns, several steps are needed: development of real crash data distribution, determination of statistical distribution models that better represent the actual crash data, determination of percentile values for the average number of crashes, estimation of crash rates for sections with the same characteristics, estimation of critical values for the variables corresponding to the percentile values for average number of crashes, calculation of tables of critical average annual daily traffic values, and generation of a list of TWLTL locations with critical safety concerns. Results presented in the paper have been used in real applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents a probabilistic delay model for signalized intersections with right‐turn channelization lanes considering the possibility of blockage. Right‐turn channelization is used to improve the capacity and to reduce delay at busy intersections with a lot of right‐turns. However, under heavy traffic conditions the through vehicles will likely block the channelization entrance that accrues delay to right‐turn vehicles. If the right‐turn channelization gets blocked frequently, its advantage in reducing the intersection delay is neglected and as a result the channelization lane becomes inefficient and redundant. The Highway Capacity Manual (HCM) neglects the blockage effect, which may be a reason for low efficiency during peak hours. More importantly, using HCM or other standard traffic control methods without considering the blockage effects would lead to underestimation of the delay. To overcome this issue, the authors proposed delay models by taking into account both deterministic and random aspects of vehicles arrival patterns at signalized intersections. The proposed delay model was validated through VISSIM, a microscopic simulation model. The results showed that the proposed model is very precise and accurately estimates the delay. In addition, it was found that the length of short‐lane section and proportion of right‐turn and through traffic significantly influence the approach delay. For operational purposes, the authors provided a step‐by‐step delay calculation process and presented approach delay estimates for different sets of traffic volumes, signal settings, and short‐lane section lengths. The delay estimates would be useful in evaluating adequacy of the current lengths, identifying the options of extending the short‐lane section length, or changing signal timing to reduce the likelihood of blockage. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The US Highway Capacity Manual (HCM) methodology is used in Spain to evaluate traffic operation and quality of service. The effect of passing manoeuvre on two‐lane highway operational performance is considered through adjustment factors to average travel speeds and percent time spent following. The procedure is largely based on simulations in TWOPAS and passing behaviours observed during US calibrations in the 1970s. It is not clear whether US driving behaviour and vehicles' performance are comparable with Spanish conditions. The objective of this research is to adapt the HCM 2010 methodology to Spanish driver behaviour, for base conditions (i.e. no passing restrictions). To do so, TWOPAS was calibrated and validated based on current Spanish passing field data. The calibration used a genetic algorithm. The case study included an ideal two‐lane highway with varying directional traffic flow rate, directional split and percentage of trucks. The updated methodology for base conditions is simpler than the current HCM 2010 and does not rely on interpolation from tables. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Two apparent features that prevail at signalized intersections in China are green signal countdown device and long cycle lengths. The objective of this study is to investigate the impacts of green signal countdown device and long cycle length on queue discharge patterns and to discuss its implications on capacity estimation in the context of China's traffic. At five typical large intersections in Shanghai and Tianjin, 11 through lanes were observed, and 9251 saturation headways were obtained as valid samples. Statistical analyses indicate that the discharge process of queuing vehicles can be divided into three distinct stages according to the discharge flow rate: a start‐up stage, a steady stage, and a rush stage. The average time for queuing vehicles to reach a stationary saturation flow rate, that is, the start‐up stage, was found to be approximately 20–30 seconds; the rush stage usually occurs during the phase transition period. The finding is contrary to the conventional assumption that the discharge rate reaches a maximum value after the fourth vehicle is discharged and then remains constant during the green time until the queue is completely dissolved. The capacity estimation errors that might arise from the conventional methods are discussed through a comparative study and a sensitivity analysis that are based on the identified queue discharge patterns. In addition, a piecewise linear regression method was proposed in order to reduce such errors. The proposed method can be used for capacity estimation at signalized intersections with the identified queue discharge patterns. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
This study investigates the impacts of traffic signal timing optimization on vehicular fuel consumption and emissions at an urban corridor. The traffic signal optimization approach proposed integrates a TRANSIMS microscopic traffic simulator, the VT-Micro model (a microscopic emission and fuel consumption estimation model), and a genetic algorithm (GA)-based optimizer. An urban corridor consisting of four signalized intersections in Charlottesville, VA, USA, is used for a case study. The result of the case study is then compared with the best traffic signal timing plan generated by Synchro using the TRANSIMS microscopic traffic simulator. The proposed approach achieves much better performance than that of the best Synchro solution in terms of air quality, energy and mobility measures: 20% less network-wide fuel consumption, 8–20% less vehicle emissions, and nearly 27% less vehicle-hours-traveled (VHT).  相似文献   

10.
An on‐street parking maneuver can often start a temporary bottleneck, leading to additional delay endured by the following vehicles. If the maneuver occurs near a signalized intersection, the service rate of the intersection might be reduced. In this paper, a model is built to analyze the effects of parking maneuvers on the intersection service rate. Based on the hydrodynamic theory of traffic flow, the perturbation caused by the parking maneuver is analyzed. Using dimensional analysis, we illustrate the relation between the background conditions, the distance from the parking area to the intersection, and the intersection service rate. Based on this relation, one can compute the service rate reduction caused by existing on‐street parking areas. A minimum distance between the parking area and the intersection to avoid such reduction can be accordingly found. Numerical examples based on empirical data from the city of Zurich, Switzerland, are provided to illustrate the practical applications. Although the analysis is based on streets with a single lane per direction, the findings can provide some insights regarding different situations. We hope such findings can be used as a basis for developing on‐street parking design guidelines. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The exclusive pedestrian phase (EPP) has been used in many countries to promote walking around downtown areas by increasing the ease and convenience of pedestrian crossing. However, its applicability has not been systematically demonstrated, especially when an intersection is operated in actuated mode. This paper presents an extensive simulation‐based analysis of the applicability of EPP as compared with a normal concurrent pedestrian‐phase pattern at an isolated intersection controlled by actuated logic. Actuated signal control logics for EPP‐actuated and conventional concurrent pedestrian phase‐actuated controls are developed. Both of these control logics consider pedestrian crossing demands and can adapt to changes in vehicle traffic to reduce vehicle delay as well. A simulation model of a two‐phase controlled intersection is built and calibrated based on field data using VISSIM (PTV Planung Transport Verkehr AG in Karlsruhe, Germany). Extensive analysis is conducted to reveal fully the applicable EPP domain in terms of vehicle traffic demand, pedestrian demand, vehicle turning ratio, and pedestrian diagonal crossing ratio. The results show that the performance and applicable domain of EPP are jointly determined by those five factors. EPP significantly outperforms concurrent pedestrian phase if the vehicle turning ratio is greater than 0.6 and the pedestrian diagonal crossing ratio is greater than 0.6. These results can help traffic engineers in choosing the appropriate pedestrian‐phase patterns at actuated signalized intersections. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Transit agencies implement many strategies in order to provide an attractive transportation service. This article aims to evaluate the impacts of implementing a combination of strategies, designed to improve the bus transit service, on running time and passenger satisfaction. These strategies include using smart card fare collection, introducing limited-stop bus service, implementing reserved bus lanes, using articulated buses, and implementing transit signal priority (TSP). This study uses stop-level data collected from the Société de transport de Montréal (STM)’s automatic vehicle location (AVL) and automatic passenger count (APC) systems, in Montréal, Canada. The combination of these strategies has lead to a 10.5% decline in running time along the limited stop service compared to the regular service. The regular route running time has increased by 1% on average compared to the initial time period. The study also shows that riders are generally satisfied with the service improvements. They tend to overestimate the savings associated with the implementation of this combination of strategies by 3.5-6.0 min and by 2.5-4.1 min for both the regular route and the limited stop service, respectively. This study helps transit planners and policy makers to better understand the effects of implementing a combination of strategies to improve running time and passenger’s perception of these changes in service.  相似文献   

13.
This Taiwan traffic‐adaptive arterial signal control model borrowed its traffic flow framework mainly from a British traffic‐adaptive control model with a cyclic traffic progression function, i.e. SCOOT (Split Cycle Office Optimisation Technique). The new arterial control model can take into account delays of both major and minor streets and make real‐time signal timing decisions with optimal two‐way signal offsets, so as to create the best arterial signal operation performance. It has been developed to be an online real‐time software for both simulation testing and field validation. Through simulation, it was found that the performance when operating this newly developed real‐time arterial traffic‐adaptive model was significantly better than when using the optimal fixed‐time arterial timing plan. On the aspect of field testing, three signalized intersections located in East District, Tainan City, Taiwan were selected to be the test sites. Fairly good traffic control performance has been demonstrated in that it can effectively reduce travel delays of the control arterial as a whole. Additional discussions about how to combine travel delay and the total number of vehicle stops into a new control performance index have also been included to make the new traffic‐adaptive model more flexible and reasonable to meet the expectations of different driver groups in the arterial system.  相似文献   

14.
Suppose that in an urban transportation network there is a specific advanced traveler information system (ATIS) which acts for reducing the drivers' travel time uncertainty through provision of pre‐trip route information. Because of the imperfect information provided, some travelers are not in compliance with the ATIS advice although equipped with the device. We thus divide all travelers into three groups, one group unequipped with ATIS, another group equipped and in compliance with ATIS advice and the third group equipped but without compliance with the advice. Each traveler makes route choice in a logit‐based manner and a stochastic user equilibrium with multiple user classes is reached for every day. In this paper, we propose a model to investigate the evolutions of daily path travel time, daily ATIS compliance rate and yearly ATIS adoption, in which the equilibrium for every day's route choice is kept. The stability of the evolution model is initially analyzed. Numerical results obtained from a test network are presented for demonstrating the model's ability in depicting the day‐to‐day and year‐to‐year evolutions.  相似文献   

15.
In Britain, capacity charges are levied on train operators to cover the costs imposed by increased reactionary delays – i.e. the delay that an already late train causes to a following train. These charges are based on the link between capacity utilisation and the level of reactionary delay. An established method for measuring capacity utilisation was adopted called The Capacity Utilisation Index (CUI). In this paper, we propose an alternative methodology based on the theory that the level of reactionary delay will be determined by the minimum gaps that exist between trains. We test this measure with a new data-set for the East Coast Main Line and show that it performs better than CUI. Finally, we comment on the implications of this finding for charging and for the construction of timetables.  相似文献   

16.
The amount of time individuals and households spend in travelling and in out‐of‐door activities can be seen as a result of complex daily interactions between household members, influenced by opportunities and constraints, which vary from day to day. Extending the deterministic concept of travel time budget to a stochastic term and applying a stochastic frontier model to a dataset from the 2004 UK National Travel Survey, this study examines the hidden stochastic limit and the variations of the individual and household travel time and out‐of‐home activity duration—concepts associated with travel time budget. The results show that most individuals may not have reached the limit of their ability to travel and may still be able to spend further time in travel activities. The analysis of the model outcomes and distribution tests show that among a range of employment statuses, only full‐time workers' out‐of‐home time expenditure has reached its limit. Also observed is the effect of having children in the household: Children reduce the flexibility of hidden constraints of adult household members' out‐of‐home time, thus reducing their ability to be further engaged with out‐of‐home activities. Even when out‐of‐home trips are taken into account in the analysis, the model shows that the dependent children's in‐home responsibility reduces the ability of an individual to travel to and to be engaged with out‐of‐home activities. This study also suggests that, compared with the individual travel time spent, the individual out‐of‐home time expenditure may perform as a better budget indicator in drawing the constraints of individual space–time prisms. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper the multi‐actor multi‐criteria analysis (MAMCA) method to evaluate transport projects is presented. This evaluation method specifically focuses on the inclusion of qualitative as well as quantitative criteria with their relative importance, defined by the multiple stakeholders, into one comprehensive evaluation process in order to facilitate the decision making process by the different stakeholders. The MAMCA methodology is introduced by an overview of other evaluation methods for transport projects in the past and is illustrated by means of two practical cases. The introduction will lead us to the theoretical conception of the MAMCA method where we draw the attention to the proven usefulness of the MAMCA for the evaluation of transport projects and the inclusion of different kinds of stakeholders, individuals as well as groups, into the evaluation process.  相似文献   

18.
This paper investigates the joint choice behavior of intercity transport modes and high‐speed rail cabin class within a two‐dimensional choice structure. Although numerous studies have been conducted on the mode choice behavior, little is known about the influence of cabin class on their intercity traveling choice. Hence, this study is conducted with a revealed preference survey to investigate the intercity traveling behavior for the western corridor of Taiwan. The results of nested logit model reveal that a cabin strategy has a more significant influence on cabin choice than on mode choice. Furthermore, this study proposes a new strategy map concept to assist transport operators in defining and implementing their pricing strategies. The results suggest that to capture a higher market share, high‐speed rail operators should choose an active price reduction strategy, while bus and rail operators are advised to implement a passive price increase strategy to raise unit revenue. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号