首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Urban air quality is generally poor at traffic intersections due to variations in vehicles’ speeds as they approach and leave. This paper examines the effect of traffic, vehicle and road characteristics on vehicular emissions with a view to understand a link between emissions and the most likely influencing and measurable characteristics. It demonstrates the relationships of traffic, vehicle and intersection characteristics with vehicular exhaust emissions and reviews the traffic flow and emission models. Most studies have found that vehicular exhaust emissions near traffic intersections are largely dependent on fleet speed, deceleration speed, queuing time in idle mode with a red signal time, acceleration speed, queue length, traffic-flow rate and ambient conditions. The vehicular composition also affects emissions. These parameters can be quantified and incorporated into the emission models. There is no validated methodology to quantify some non-measurable parameters such as driving behaviour, pedestrian activity, and road conditions  相似文献   

2.
Historically, evacuation models have relied on values of road capacity that are estimated based on Highway Capacity Manual methods or those observed during routine non-emergency conditions. The critical assumption in these models is that capacity values and traffic dynamics do not differ between emergency and non-emergency conditions. This study utilized data collected during Hurricanes Ivan (2004), Katrina (2005) and Gustav (2008) to compare traffic characteristics during mass evacuations with those observed during routine non-emergency operations. From these comparisons it was found that there exists a consistent and fundamental difference between traffic dynamics under evacuation conditions and those under routine non-emergency periods. Based on the analysis, two quantities are introduced: “maximum evacuation flow rates” (MEFR) and “maximum sustainable evacuation flow rates” (MSEFR). Based on observation, the flow rates during evacuations were found to reach a maximum value of MEFR followed by a drop in flow rate to a MSEFR that was able to be sustained over several hours, or until demand dropped below that necessary to completely saturate the section. It is suggested that MEFR represents the true measure of the “capacity”. These findings are important to a number of key policy-shaping factors that are critical to evacuation planning. Most important among these is the strong suggestion of policy changes that would shift away from the use of traditional capacity estimation techniques and toward values based on direct observation of traffic under evacuation conditions.  相似文献   

3.
Traffic characteristics and operations at the signalised intersections of developing cities are significantly different from those at the similar intersections of cities in developed countries. Considering this, a new microscopic simulation technique, where a co-ordinate approach to modelling vehicle location is adopted, has been used for modelling the traffic operations at signalised intersections of developing cities. The model has been calibrated and validated on the basis of data collected from Dhaka, the capital of Bangladesh. It has been found that the concept of passenger car unit (PCU), which is widely used as a signal design parameter, is not applicable in case of mixed traffic comprising of both motorised and non-motorised vehicles. Therefore, using the developed simulation model the saturation flows at signalised intersections are investigated in an aggregate form of vehicles per hour. It has also been found that saturation flows in terms of aggregate vehicles are very much dependent on the approach width, turning proportion and composition of the traffic mix. Using the simulation results, an equation has also been regressed in order to be able to estimate the saturation flow from the influencing variables like road width, turning proportion, percentage of heavy and non-motorised vehicles.  相似文献   

4.
The level of service (LOS) concept in the Highway Capacity Manual has been used as a qualitative measure representing freeway operational conditions for over 35 years. One key element that has not been adequately addressed is how road users perceive LOS. This exploratory research examines road-user perceptions of freeway LOS by presenting study participants with a series of video clips of various traffic conditions (taken from cameras on overpasses to allow a complete view of the traffic stream) and asking them their perceptions of LOS. A random effects ordered probability model is then used to statistically link participant-recorded perceptions of LOS with measurable traffic conditions (speed, density, flow, percentage of trucks, vehicle headways) and participant characteristics. The findings suggest that the Highway Capacity Manual’s use of traffic density as a single performance measure for LOS does not accurately reflect road-user perceptions. The statistical analysis shows that a number of attributes besides traffic density determine public perceptions of LOS and that these perceptions vary depending on both traffic conditions and road-user characteristics.  相似文献   

5.
The number of vehicles on the road (worldwide) is constantly increasing, causing traffic jams and congestion especially in city traffic. Anticipatory vehicle routing techniques have thus far been applied to fairly small networked traffic scenarios and uniform traffic. We note here a number of limitations of these techniques and present a routing strategy on the assumption of a city map that has a large number of nodes and connectivity and where the vehicles possess highly varying speed capabilities. A scenario of operation with such characteristics has not previously been sufficiently studied in the literature. Frequent short‐term planning is preferred as compared with infrequent planning of the complete map. Experimental results show an efficiency boost when single‐lane overtaking is allowed, traffic signals are accounted for and every vehicle prefers to avoid high traffic density on a road by taking an alternative route. Comparisons with optimistic routing, pessimistic routing and time message channel routing are given. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Performance of two‐lane intercity highways has been evaluated in terms of level of service (LOS) by different researchers. Different follower‐related performance measures, namely, the number of followers (NF), percent followers (PF), follower density (FD) and the number of followers as a proportion of capacity (NFPC) are examined in the present study to define LOS. Data are collected from five sites located in different parts of India. While almost all the past studies used 3‐s headway rule to identify followers suggested by US Highway Capacity Manual, a new methodology is proposed in the current study to identify the followers by analysing speed difference (SD) and the gap between two consecutive vehicles. It is observed that vehicles travel in non‐following condition after a critical gap threshold value of 10 s. By using a SD limit of ?4 km/h to +10 km/h and a gap value of 10 s, followers are identified across all the study sites. Thereafter, different critical gap values ranging from 1.9 s to 4.3 s are observed at the study sites beyond which the probability of not following would increase. Variation in two‐way traffic volume is found to be the main contributory factor which affects the critical gap values. Among all of the performance measures, NFPC shows a strong correlation with two‐way traffic volume followed by FD under heterogeneous traffic condition. Finally, different threshold values of LOS ranges for two‐lane intercity highways are provided by carrying out cluster analysis with the help of NFPC and FD. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
The coordinated development of city traffic and environment is a key research content in traffic field in twenty-first Century. Among them, road section environmental traffic capacity analysis is one of the important research issues. It can provide solid theoretical basis and reliable data support for road network traffic optimization control, road traffic pollution control and city traffic structure optimization. This paper analyzed main factors which impacted environmental traffic capacity from two aspects, including road capacity constraint conditions and road traffic pollution control constraint conditions. Then, road section environmental traffic capacity optimization model was established, and method of improved augmented Lagrange function was used to solve the model. Case study showed that, (1) The environmental traffic capacity optimal model and methodology were effective; (2) In order to ensure road section environmental traffic capacity greater than (or equal to) road capacity, some measures could be taken including adjusting motor vehicle type proportion as well as improving emission characteristics of motor vehicles exhausting pollutants.  相似文献   

8.
Oversized vehicles, such as trucks, significantly contribute to traffic delays on freeways. Heterogeneous traffic populations, that is, those consisting of multiple vehicles types, can exhibit more complicated travel behaviors in the operating speed and performance, depending on the traffic volume as well as the proportions of vehicle types. In order to estimate the component travel time functions for heterogeneous traffic flows on a freeway, this study develops a microscopic traffic‐simulation based four‐step method. A piecewise continuous function is proposed for each vehicle type and its parameters are estimated using the traffic data generated by a microscopic traffic simulation model. The illustrated experiments based on VISSIM model indicate that (i) in addition to traffic volume, traffic composition has significant influence on the travel time of vehicles and (ii) the respective estimations for travel time of heterogeneous flows could greatly improve their estimation accuracy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Work zones exist widely on urban arterials in the cities that are undergoing road construction or maintenance. However, the existing studies on arterial work zones are very limited, especially on the work zones at urban intersections, although they have a severe negative impact on the urban traffic system. For the first time, this study focuses on how work zones reduce intersection capacity. A type of widely observed work zone, the straddling work zone that straddles on a road segment and an intersection, is studied. A linear regression model and a multiplicative model suggested by Highway Capacity Manual are proposed respectively to determine the saturation flow rate of the signal intersection with the straddling work zone. The data of 22 straddling work zones are collected and used to evaluate the performances of the proposed models. The results display that the linear regression model outperforms the multiplicative model suggested by Highway Capacity Manual. The study also reveals that reducing approach (or exit) lanes and the mixture of motor vehicles and non‐motor vehicles (and pedestrians) can significantly decrease the capacity of the intersection with straddling work zone. Therefore, in setting a straddling work zone, workers should try to ensure that the intersection approach and exit are unobstructed and set a separation for non‐motors and pedestrians to avoid mixed traffic flow. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
In order to account for variations in traffic composition during traffic analysis, passenger car equivalent (PCE) factors are used to convert flow rates of various vehicle classes into flow rates in terms of passenger car units (PCUs). Earlier studies have developed various methods to estimate PCE values but only a few of them are based on uninterrupted traffic flow, particularly for flow regimes with heterogeneous traffic where differential (lower) speed limits are imposed on commercial vehicles. This paper proposes a lane-harmonisation approach, which leverages on the high variation in traffic composition across the lanes, to estimate PCE factors for urban expressways. Multiple linear regression is used and the PCE factors obtained for motorcycles, light goods vehicles, and heavy goods vehicles are 0.65, 1.53, and 2.75, respectively. The estimated capacity flow rate after the application of the obtained PCE factors is around 2200 PCUs per hour per lane.  相似文献   

11.
This work examines the impact of heavy vehicle movements on measured traffic characteristics in detail. Although the number of heavy vehicles within the traffic stream is only a small percentage, their impact is prominent. Heavy vehicles impose physical and psychological effects on surrounding traffic flow because of their length and size (physical) and acceleration/deceleration (operational) characteristics. The objective of this work is to investigate the differences in traffic characteristics in the vicinity of heavy vehicles and passenger cars. The analysis focuses on heavy traffic conditions (level of service E) using a trajectory data of highway I‐80 in California. The results show that larger front and rear space gaps exist for heavy vehicles compared with passenger cars. This may be because of the limitations in manoeuvrability of heavy vehicles and the safety concerns of the rear vehicle drivers, respectively. In addition, heavy vehicle drivers mainly keep a constant speed and do not change their speed frequently. This work also examines the impact of heavy vehicles on their surrounding traffic in terms of average travel time and number of lane changing manoeuvres using Advanced Interactive Microscopic Simulator for Urban and Non‐Urban Networks (AIMSUN) microscopic traffic simulation package. According to the results, the average travel time increases when proportion of heavy vehicles rises in each lane. To reflect the impact of heavy vehicles on average travel time, a term related to heavy vehicle percentage is introduced into two different travel time equations, Bureau of Public Roads and Akçelik's travel time equations. The results show that using an exclusive term for heavy vehicles can better estimate the travel times for more than 10%. Finally, number of passenger car lane changing manoeuvres per lane will be more frequent when more heavy vehicles exist in that lane. The influence of heavy vehicles on the number of passenger car lane changing is intensified in higher traffic densities and higher percentage of heavy vehicles. Large numbers of lane changing manoeuvres can increase the number of traffic accidents and potentially reduce traffic safety. The results show an increase of 5% in the likelihood of accidents, when percentage of heavy vehicles increases to 30% of total traffic. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The notion of capacity is essential to the planning, design, and operations of freeway systems. However, in the practice freeway capacity is commonly referred as a theoretical/design value without consideration of operational characteristics of freeways. This is evident from the Highway Capacity Manual (HCM) 2000 in that no influence from downstream traffic is considered in the definition of freeway capacity. In contrast to this definition, in this paper, we consider the impact of downstream traffic and define freeway operational capacity as the maximum hourly rate at which vehicles can be expected to traverse a point or a uniform section of a roadway under prevailing traffic flow conditions. Therefore freeway operational capacity is not a single value with theoretical notion. Rather, it changes under different traffic flow conditions. Specifically, this concept addresses the capacity loss during congested traffic conditions. We further study the stochasticity of freeway operational capacity by examining loop detector data at three specifically selected detector stations in the Twin Cities’ area. It is found that values of freeway operational capacity under different traffic flow conditions generally fit normal distributions. In recognition of the stochastic nature of freeway capacity, we propose a new chance-constrained ramp metering strategy, in which, constant capacity value is replaced by a probabilistic one that changes dynamically depending on real-time traffic conditions and acceptable probability of risk determined by traffic engineers. We then improve the Minnesota ZONE metering algorithm by applying the stochastic chance constraints and test the improved algorithm through microscopic traffic simulation. The evaluation results demonstrate varying degrees of system improvement depending on the acceptable level of risk defined.  相似文献   

13.
Common sense suggests that, at any point on a road network, there is an absolute limit to the volume of traffic which can be carried. But previous attempts to measure this “limiting capacity” have met with difficulties. First, there may not be enough vehicles to saturate the section of road under observation. Second, the flow may be constrained by a bottleneck upstream or downstream. Third, even under favourable conditions, the flows actually observed at saturation point tend to vary over a wide range, giving little clear indication as to what the value of the limiting capacity might be. In this paper, consideration is given to the variations in flow which occur over a time during normal traffic conditions, and to the characteristics of the extreme values which occur from time to time under these conditions. Two distinct types of statistical theory can be applied to extreme values. First, one can apply straight- forward probability theory, to predict the largest flows likely to be observed during a given period, assuming an idealised traffic stream with a known flow counting distribution. Second, one can attempt to deduce an upper limit from observed flow data using asymptotic methods of the kind which are frequently used in connection with meteorological and flood defense problems. Both methods are applied to a sample of 9000 flow values recorded at a site in London. Both methods are shown to fit the data reasonably well, but only the asymptotic method reveals a clear upper limit. Possible applications of the method are briefly discussed.  相似文献   

14.
The promotion of bicycle transportation includes the provision of suitable infrastructure for cyclists. In order to determine if a road is suitable for bicycling or not, and what improvements need to be made to increase the level of service for bicycles on specific situations, it is important to know how cyclists perceive the characteristics that define the roadway environment. The present paper describes research developed to define which roadway and traffic characteristics are prioritized by users and potential users in the evaluation of quality of roads for bicycling in urban areas of Brazilian medium-sized cities. A focus group discussion identified 14 attributes representing characteristics that describe the quality of roads for bicycling in Brazilian cities. In addition, an attitude survey was applied with individuals to assess their perception on the attributes, along with the importance given to each one of them. The results were analyzed through the Method of Successive Intervals Analysis, which allows the transformation of categorical data into an interval scale. The analysis suggests that both the roadway and traffic characteristics related to segments and those related to intersections are important to the survey respondents. The five most important attributes, in their opinion, are: (1) lane width; (2) motor vehicle speed; (3) visibility at intersections; (4) presence of intersections; and (5) street trees (shading). Therefore, the research suggests that to promote bicycle use in Brazilian medium-sized cities, these attributes must be prioritized.  相似文献   

15.
This paper presents the results of a project conducted to study the characteristics of truck traffic in Singapore. Detailed traffic surveys recording counts of vehicles by axle-configuration were performed at 219 sites over a period of nearly two years. The surveys covered 5 different road classes, namely expressways, arterials, collectors, industrial roads and local roads. It was found that the time distribution of truck travel were not the same among the five road classes. The peaking characteristics of truck traffic were less pronounced compared to passenger car traffic. The peak hour truck volume varied from 67.0% to 9.7% of the daily truck traffic as compared to 13.8% for passenger car traffic. The lane distribution pattern of truck traffic was studied in detail by road class, and was found to be a function of total directional traffic volume, total directional truck volume and the number of traffic lanes. Composition analysis was also carried out to study the lane use characteristics of single- and multiple-unit trucks.  相似文献   

16.
This study calculates the natural resource use of road transport for different road categories and for different vehicle types. Material inputs per service are determined as the life cycle wide consumption of materials by the road and vehicles, and set against person-kilometres and ton-kilometres transported. If the material input of the infrastructure is allocated to the users according to traffic volume, the material input per service values for abiotic resources and for water are much higher for cars than for bus traffic. The material inputs per service unit for air is significantly lower for buses than for cars. For bicycles, abiotic natural resource consumption is between that for cars and buses, while water consumption is in most instances the highest and air consumption the lowest for the modes studied. The material input per service values for the full trailer are significantly lower than for other goods vehicles. The material inputs per service value for air is significantly higher in the case of vans. If the allocation of road infrastructure use is done by gross vehicle weight, the material input per service values for abiotic resources and water of buses and heavy lorries rise.  相似文献   

17.
Road traffic noise models are fundamental tools for designing and implementing appropriate prevention plans to minimize and control noise levels in urban areas. The objective of this study is to develop a traffic noise model to simulate the average equivalent sound pressure level at road intersections based on traffic flow and site characteristics, in the city of Cartagena de Indias (Cartagena), Colombia. Motorcycles are included as an additional vehicle category since they represent more than 30% of the total traffic flow and a distinctive source of noise that needs to be characterized. Noise measurements are collected using a sound level meter Type II. The data analysis leads to the development of noise maps and a general mathematical model for the city of Cartagena, Colombia, which correlates the sound levels as a function of vehicle flow within road intersections. The highest noise levels were 79.7 dB(A) for the road intersection María Auxiliadora during the week (business days) and 77.7 dB(A) for the road intersection India Catalina during weekends (non-business days). Although traffic and noise are naturally related, the intersections with higher vehicle flow did not have the highest noise levels. The roadway noise for these intersections in the city of Cartagena exceeds current limit standards. The roadway noise model is able to satisfactorily predict noise emissions for road intersections in the city of Cartagena, Colombia.  相似文献   

18.
This paper relies on vehicle trajectory collection on a corridor, to compare different traffic representations used for the estimation of the sound power of light vehicles and the resulting sound pressure levels. Four noise emission models are tested. The error introduced when the emissions are calculated based on speeds measured at regular intervals along the road network are quantified and explained. The current noise emission models might in particular misestimate noise levels under congestion. This bias can be reduced by introducing additional traffic variables in the modeling. In addition, significant differences within the models are highlighted, especially concerning their accounting of vehicle accelerations. Models that rely on a binary representation of acceleration regimes (a vehicle or a road segment is accelerating or not) can lead to errors in practice. Models under use in Europe have a very low sensitivity to acceleration values. These results help underlying the further required improvements of dynamic road traffic noise models.  相似文献   

19.
Variable speed limit systems where variable message signs are used to show speed limits adjusted to the prevailing road or traffic conditions are installed on motorways in many countries. The objectives of variable speed limit system installations are often to decrease the number of accidents and to increase traffic efficiency. Currently, there is an interest in exploring the potential of cooperative intelligent transport systems including communication between vehicles and/or vehicles and the infrastructure. In this paper, we study the potential benefits of introducing infrastructure to vehicle communication, autonomous vehicle control and individualized speed limits in variable speed limit systems. We do this by proposing a cooperative variable speed limit system as an extension of an existing variable speed limit system. In the proposed system, communication between the infrastructure and the vehicles is used to transmit variable speed limits to upstream vehicles before the variable message signs become visible to the drivers. The system is evaluated by the means of microscopic traffic simulation. Traffic efficiency and environmental effects are considered in the analysis. The results of the study show benefits of the infrastructure to vehicle communication, autonomous vehicle control and individualized speed limits for variable speed limit systems in the form of lower acceleration rates and thereby harmonized traffic flow and reduced exhaust emissions.  相似文献   

20.
Traffic density can be accurately measured by counting the number of vehicles within 1 km; however, it is often calculated between macroscopic traffic parameters using the fundamental equation because of difficulty of observing traffic density directly in the field. Measuring density in this way may be inaccurate and may bias the analysis because the relationship between these traffic parameters can vary across the study sites. The purpose of this study is to find a method for measuring traffic density from aerial photography that is easy and accurate, and for this purpose, we investigated whether the measuring length (i.e., the length of a section of roadway from which observations of traffic are simultaneously collected) can be shorter than 1 km and yet retain the same measured traffic density. We divided an aerial photograph into several 20‐m unit sections, counted the number of vehicles manually, and examined measured traffic density according to central limit theory. According to the results of this study, with the number of 20‐m unit sections for observing traffic density at 15 (the measuring length is 300 m), the measured traffic density was almost the same as the density of a representative section of 1 km. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号