首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 A structural safety assessment of a pontoon-type very large floating structure (VLFS) surrounded by a gravity-type breakwater was carried out for extreme wave conditions by considering the damage to the breakwater. Bending and shear collapses are considered to be a failure mode of the floating structure, while overturning damages the breakwater. The probability of the breakwater overturning, and the transmitted wave height before and after damage to the breakwater, are evaluated using design formulae for port and harbor facilities in Japan. The ultimate bending and shear strengths of the floating structure are calculated by the idealized structural unit method (ISUM) and FEM, respectively. The calculated failure probability for the floating structure is compared with the specified target safety level. It was found that the floating structure under consideration is most likely to fail by bending in transverse waves, and that the corresponding failure probability satisfies the target level. Received: September 12, 2002 / Accepted: October 4, 2002 Acknowledgment. The authors are grateful to Dr. Shigeo Ohmatsu, National Maritime Research Institute, Japan, for allowing us to use the program of hydroelastic response analysis. Address correspondence to: M. Fujikubo (e-mail: fujikubo@naoe.hiroshima-u.ac.jp) Updated from the Japanese original, which won the 2002 SNAJ prize (J Soc Arthit Jpn 2002;190:337–345)  相似文献   

2.
In designing the mooring system of a very large floating structure (VLFS), it is essential to estimate the slowly varying drift force in random seas. For a small vessel, Hsu's method or Newman's approximation may be used to simulate this slowly varying drift force. However, based on experiments and/or field observations, it was found that the slowly varying drift force acting on a VLFS could be reduced to a great extent from the simulated values based on those methods. Thus, the conventional methods are not applicable for a VLFS. This discovery led to the development of several methods for estimating the slowly varying drift force on a VLFS, e.g., Namba et al. (J Soc Nav Archit Jpn 186:235–242, 1999), and Shimada and Maruyama (J Soc Nav Archit Jpn 190:347–351, 2001). However, Namba's method is only applicable to a pontoon-type VLFS with a shallow draft, and Shimada's method is too simplified to account for the general shape of a VLFS and elastic deformation. These methods have been expanded in this article, and by our proposed method, any shape of VLFS and the effect of elastic deformation of the VLFS can be included. Formulations and several numerical examples are given.  相似文献   

3.
 The practical use of automated computational fluid dynamics (CFD)-based design tools in the ship-building industry requires powerful flow solvers which are able to take into account realistic geometries as well as complex physical phenomena, such as turbulence. A shape optimization tool is developed in this framework. A derivative-free optimizer, yielding both flexibility and robustness, is preferred to the classical gradient-based method, which is more difficult to implement and is still limited to only moderately complex problems. The flow solver included in the design procedure solves the incompressible Reynolds-averaged Navier–Stokes equations on unstructured grids using a finite-volume formulation involving several near-wall low-Reynolds-number turbulence models. The design tool is used to optimize the stern of a modern hull shape at model and full scale, with different purposes being considered. More precisely, the drag reduction and the homogenization of the flow in the wake are expected by controlling the longitudinal vortex generated. Our interest is particularly focused on the influence of turbulence modeling in the design process. The effects of a two-equation model based on the eddy-viscosity assumption and a second-order closure relying on the Reynolds stress transport equations are compared. Received: September 24, 2002 / Accepted: April 14, 2003 RID="*" Acknowledgment. The authors thank the scientific committee of CINES (project dmn2050) for the attribution of CPU time.  相似文献   

4.
 Time-varying coefficient vector autoregressive (T-VVAR) modeling with instantaneous responses is applied to spectrum analysis based on the nonstationary motion data of ships. Because of the ship's maneuvers, changes such as course and speed, the ship motions in waves are regarded as a nonstationary random process, although the seaway can be considered as a stationary stochastic process. The T-VVAR model is transformed into a state space model, and the time-varying coefficients can be evaluated by using the Kalman filter algorithm. Using the estimated time-varying coefficients, the instantaneous cross spectra of the ship motions can be calculated at every moment. In order to examine the reliability of the proposed procedure, on-board tests were carried out. Under stationary conditions, at a constant speed and course, the proposed method shows good agreement with stationary vector autoregressive (SVAR) modeling analysis. Moreover, it is confirmed that the proposed method can estimate the instantaneous cross spectra of the ship motions even under nonstationary conditions, showing that this is a powerful tool for on-line analysis of the nonstationary motion data of ships. Received: August 2, 2002 / Accepted: November 28, 2002 Acknowledgments. The authors thank the captain and crew of the training ship Shioji Maru, Tokyo University of Mercantile Marine. Address correspondence to: T. Iseki (iseki@ipc.tosho-u.ac.jp) Updated from the Japanese original, which won the 2002 SNAJ prize (J Soc Nav Archit Jpn 2001;190:161–168)  相似文献   

5.
 The Japan Marine Science and Technology Center (JAMSTEC) has been, and is now promoting the “OD21” program (i.e., “Ocean drilling in the 21st century”). This is the first plan in the world to utilize deep-water riser-drilling technologies for scientific drilling. One of the important factors for the success of this program is the development of a high-performance drilling vessel. Since 1990, JAMSTEC has been continuing a technological study of a riser-drilling vessel for scientific studies with an operational capability in waters up to 4000 m deep. It was decided to start the construction with a two-phase plan: a vessel with a riser operation for waters up to 2500 m deep will be constructed in the initial stage, and then the vessel will be modified to a 4000-m depth capability. In the development process of the vessel, named Chikyu, many new technical developments have taken place, such as drilling/coring equipment, a dynamic positioning system, etc. Thus, the Chikyu is expected to contribute to ocean engineering and other work, in addition to scientific advances. Received: June 15, 2002 / Accepted: November 11, 2002 Address correspondence to: Y. Yano (e-mail: yanoy@jamstec.go.jp)  相似文献   

6.
 We have attempted to develop a more consistent mathematical model for capsizing associated with surf-riding in following and quartering waves by taking most of the second-order terms of the waves into account. The wave effects on the hull maneuvring coefficients were estimated, together with the hydrodynamic lift due to wave fluid velocity, and the change in added mass due to relative wave elevations. The wave effects on the hydrodynamic derivatives with respect to rudder angles were estimated by using the Mathematical Modelling Group (MMG) model. Then captive ship model experiments were conducted, and these showed reasonably good agreements between the experiments and the calculations for the wave effects on the hull and the rudder maneuvring forces. It was also found that the wave effects on restoring moments are much smaller than the Froude–Krylov prediction, and the minimum restoring arm appears on a wave downslope but not on a wave crest amidship. Thus, an experimental formula of the lift force due to the heel angle of the ship is provided for numerical modelling. Numerical simulations were then carried out with these second-order terms of waves, and the results were compared with the results of free-running model experiments. An improved prediction accuracy for ship motions in following and quartering seas was demonstrated. Although the boundaries of the ship motion modes were also obtained with both the original model and the present one, the second-order terms for waves are not so crucial for predicting the capsizing boundaries themselves. Received: June 20, 2002 / Accepted: October 10, 2002 Acknowledgments. This research was supported by a Grant-in-Aid for Scientific Research of the Ministry of Education, Culture, Sports, Science and Technology of Japan (No. 13555270). The authors thank Prof. N. Rakhmanin of the Krylov Ship Research Institute for providing the Russian literature, as well as Mr. H. Murata of NHK (Japan Broadcasting Corporation) for translating it into Japanese. Address correspondence to: N. Umeda (e-mail: umeda@naoe.eng.osaka-u.ac.jp)  相似文献   

7.
 Explicit expressions are derived for the drift force that will act on a bottom-mounted, slightly porous vertical cylinder fixed in regular waves. The drift-force expressions derived both from the near-field and the far-field are shown. It is indicated, and numerically demonstrated, that the conventional far-field formula does not hold for a porous body, but needs the additional term of a near-field body-surface integration. Received: July 4, 2002 / Accepted: November 6, 2002 Acknowledgment. The author would like to acknowledge Prof. Kashiwagi, of Kyushu University, for indicating the work of Havelock relating to Eq. 20. Address correspondence to: H. Kagemoto (e-mail: kagemoto@k.u-tokyo.ac.jp)  相似文献   

8.
 To develop a practical prediction method for the green water load and volume on the bow deck in irregular waves, model tests were conducted using a tanker and a cargo ship on a domestic Japanese voyage. The relation between green water load and relative water height at the stem was considered. Based on the finding that the maximum value of the green water load is proportional to the square of the maximum value of the water elevation over the bow top, the probability density functions of the green water load and volume in short-term predictions were proposed. It was verified that the proposed functions show good agreement with the measured distributions, especially in the tails, and were better than conventional functions. Using these functions, long-term predictions of the green water load were carried out. It was confirmed that the present method is more rational than the conventional one for estimating the long-term probability of the green water load. An assessment of the bow height of a domestic Japanese ship from the viewpoint of deck wetness was carried out using these prediction methods. This research was used as the technical background for the revision of domestic rules on load lines, which was enforced in October 2001. Received: July 19, 2002 / Accepted: October 30, 2002 Acknowledgment. Some of the present study was carried out as part of a cooperation project (RR45) with the Shipbuilding Research Association of Japan, supported by the Nippon Foundation. Address correspondence to: Y. Ogawa (e-mail: ogawa@nmri.go.jp)  相似文献   

9.
 Seaquakes, which are characterized by the propagation of vertical earthquake motion at the sea bottom as a compression (longitudinal) wave, are reported to cause damage to ships, and their effect on floating structures is a matter of great concern. To comprehend the basic properties of seaquakes, we first discuss a method to calculate the displacement of the seabed when it is subjected to hydrodynamic pressure. To investigate the interrelationship between the vibration of a floating structure and the deformation of the seabed, a new boundary integral equation is derived which assumes that the seabed is a semiinfinite homogeneous elastic solid in order to analyze the seaquake-induced hydrodynamic pressure acting on the floating structure. By considering the propagation of the seismic wave in the ground and in the water, the incident wave potential in seaquake problems is also deduced and its characteristics are discussed. Finally, the response of a very large floating structure in a seaquake is investigated using a fluid force analysis method, and considering the interrelationship between the vibration of the floating structure and the deformation of the seabed. Received: August 19, 2002 / Accepted: November 11, 2002 Address correspondence to: H. Takamura (hiroaki_takamura@nishimatsu.co.jp) Updated from the Japanese original, which won the 2002 SNAJ prize (J Soc Nav Archit Jpn 2001;189:87–92,93–100 and 190:381–386)  相似文献   

10.
The fluid-structure interaction of oblique irregular waves with a pontoon-type very large floating structure (VLFS) edged with dual horizontal/inclined perforated plates has been investigated in the context of the direct time domain modal expansion theory. For the hydroelastic analysis, the boundary element method (BEM) based on time domain Kelvin sources is implemented to establish water wave model including the viscous effect of the perforated plates through the Darcy’s law, and the finite element method (FEM) is adopted for solving the deflections of the VLFS modeled as an equivalent Mindlin thick plate. In order to enhance the computing efficiency, the interpolation-tabulation scheme is applied to assess rapidly and accurately the free-surface Green function and its partial derivatives in finite water depth, and the boundary integral equation of a half or quarter VLFS model is further established taking advantage of symmetry of flow field and structure. Also, the numerical solutions are validated against a series of experimental tests. In the comparison, the empirical relationship between the actual porosity and porous parameter is successfully applied. Numerical solutions and model tests are executed to determine the hydroelastic response characteristics of VLFS with an attached anti-motion device. This study examines the effects of porosity, submerged depth, inclined angle and gap distance of such dual perforated anti-motion plates on the hydroelastic response to provide information regarding the optimal design. The effects of oblique wave angle on the performance of anti-motion and hydroelastic behavior of VLFS are also emphatically examined.  相似文献   

11.
 This article presents a mixed method of analyzing shell elements and solid elements using the overlaying mesh method. In the structural design of a ship's hull, the shell elements are used for the global model. However, the solid elements are necessary to analyze the stress concentration zones or the vicinity of a crack. In such cases, the models are analyzed using zooming analysis, in which the results of a global model analysis are transferred to a local model analysis by imposing boundary conditions. This method is more advantageous than zooming analysis in terms of the accuracy of the solution and the modeling flexibility. Some examples of a plate model with a cracked surface or with a projection are shown in order to demonstrate the effectiveness of the method. Received: August 6, 2002 / Accepted: November 25, 2002 Address correspondence to: S. Nakasumi (sumi@nasl.t.u-tokyo.ac.jp) Updated from the Japanese original, which won the 2002 SNAJ prize (J Soc Nav Archit Jpn 2001;189:219–224; and 190:655–662)  相似文献   

12.
A mechanical model of a fracturing viscoelastic material was developed to investigate viscous effects in a dynamically growing crack-tip field. It was shown that in the stable creep-growing phase,elastic deformation and viscous deformation are equally dominant in the near-tip field,and stress and strain have the same singularity,namely,(σ,ε ) ∝ r?1 /( n?1) . The asymptotic solution of separating variables of stress,stain and displacement in the crack-tip field was obtained by asymptotic analysis,and the resulting numerical value of stress and strain in the crack-tip field was obtained by the shooting method and the boundary condition of a mode I crack. Through numerical calculation,it was shown that the near-tip fields are mainly governed by the creep exponent n and Mach number M . When n →∞,the asymptotic solution of a viscoelastic material can be degenerated into that of Freund's elastic-ideally plastic material by analyzing basic equations.  相似文献   

13.
 The concept of a mobile offshore base (MOB) reflects the need to stage and support military and humanitarian operations anywhere in the world. A MOB is a self-propelled, modular, floating platform that can be assembled into lengths of up to 2 km, as required, to provide logistic support to US military operations where fixed bases are not available or adequate. It accommodates the take-off and landing of C17 aircraft, and can be used for storage, as well as to send resources quickly to shore. In most concepts, the structure is made of three to five modules, which have to perform long-term station-keeping in the presence of winds, waves, and currents. This is usually referred to as dynamic positioning (DP). In the MOB, the alignment is maintained through the use of thrusters, connectors, or a combination of both. In this paper, we consider the real-time control of scaled models of a MOB. The modules are built at the 1 : 150 scale, and are kept aligned by rotating thrusters under a hierarchical hybrid control scheme. This paper describes a physical testbed developed at the University of California, Berkeley, under a grant from the US Office of Naval Research, for the purpose of evaluating competing MOB control concepts. Received: June 4, 2002 / Accepted: October 30, 2002 Acknowledgments. This material is based on work supported by the MOB Program of the US Office of Naval Research under grant N00014-98-1-0744. The authors would like to thank the Link Foundation for its support. Many thanks go to Stephen Spry for his experimental work. The photographs are courtesy of Bill Stone, Gerald Stone, and Jay Sullivan of the PATH Publications staff. Address correspondence to: A.R. Girard (e-mail: anouck@eecs.berkeley.edu)  相似文献   

14.
半潜式超大型浮体的多刚体试验研究   总被引:1,自引:0,他引:1  
超大型浮体作为人类开发海洋的前沿基地,正在成为世界各国海洋工程界研究的一个热点.由于超大型浮体尺度巨大,因此它必定会采用模块化结构,由几种基本的模块在海上加以拼装,连接而成.因此,采用何种形式的连接器已成为超大型海洋浮式结构物设计过程中的一大关键技术问题.本文主要介绍了国内首次进行的半潜式超大型浮体的多刚体试验,在试验中采用刚性模块、柔性连接形式,对各模块的相对运动以及模块与模块之间连接器载荷的动力响应特性进行了研究.  相似文献   

15.
[目的]在离散模块?梁单元(DMB)水弹性理论框架下,提出针对连接形式复杂的超大型浮体结构(VLFS)的新的建模方法,并与已有方法进行对比分析.[方法]首先,概述基于DMB的水弹性分析方法,给出求解连续VLFS结构在波浪作用下的动力响应步骤;然后,针对VLFS复杂连接处进行建模,通过定义连接处的刚度矩阵,对与连接处相邻...  相似文献   

16.
In part I of this series, experimental investigation in EPFM (elastic-plastic fracture mechanics) had been discussed. In this paper, experimental investigation in LEFM ( linear elastic fracture mechanics) is given. Fracture toughness tests had been carried out on three different strength steels, using both through-cracked specimens with different α/W ratio and semi-elliptical cracked specimens with variable crack size and shape. Results show that the fracture toughness KIC increases with decreasing α/W when α/W 〈 0.3 for three-point-bend specimens, and that for α/W 〉 0.3, it is independent of α/W. Shallow crack specimens, both through-cracked and surface-cracked, gave markedly higher values than deeply notched specimens. However, the effect of crack shape on fracture toughness is negligible. Results also show that the LEFM approach to fracture is not tenable for design stresses where αc is often very small, far less than 2.5 ( KIC/σy)^2.  相似文献   

17.
 Process planning for a hull structure defines the assembly sequence of the hull block. Although this activity is very important because the working strategy defines the production costs, to date it has been done manually. To raise the efficiency of this process, we developed a practical computer-aided process planning system. It has been developed using deliverables obtained from advanced computer integrated manufacturing system (CIM; ACIM) for shipbuilding projects sponsored by the Ship and Ocean Foundation (SOF). The system has a knowledge base which contains the know-how of skilled designers as well as design practices, and allows the assembly sequence of hull parts and intermediate products to be defined automatically. The system has been integrated with the shipyard CAD system MATES, and put to practical use. Received: August 19, 2002 / Accepted: November 25, 2002 Address correspondence to: Y. Sasaki (yuuichi_sasaki@mhi.co.jp) Updated from the Japanese original, which won the 2002 SNAJ prize (J Soc Nav Archit Jpn 2001;189:309–315)  相似文献   

18.
《Marine Structures》2000,13(4-5):383-397
Numerical analysis of the wave-drift damping of VLFS as a floating elastic plate is presented. The source distribution method is used to analyze the drift force of the floating plate advancing with low-forward speed in waves. In the analysis, the shallow-draft assumption of the floating body is utilized; this assumption leads to the neglect of the steady disturbance field, which simplifies the analysis to a great extent. The consideration of the elastic deformation is made by modal expansion of the response, and the unit-amplitude radiation potentials are computed for each mode. The numerical results have confirmed that the wave-drift damping will have appreciable magnitude at the frequency region where the slow-drift oscillations are dominant. The formula for the wave-drift damping proposed by Aranha (J Fluid Mech 1996;313:39–54) has been compared with the present numerical results, but fundamental disagreement has been observed as reported by Finne and Grue (J Fluid Mech 1998;357:289–320).  相似文献   

19.
This paper deals with the dispersion relation of hydroelastic waves in pontoon-type very large floating structures (VLFS) using a simple beam modeling, where the term hydroelastic waves means propagation of deflection vibrations in VLFS. The purpose of this paper is to show the properties of the hydroelastic waves. The dispersion relation of hydroelastic waves propagating in an infinite plate floating on the water is derived based on the linear water wave theory. The effects of the water depth and of the bending rigidity of the floating plate on the wavelength, phase velocity, and group velocity of the hydroelastic waves are shown theoretically or numerically. Then, the dispersion relation of hydroelastic waves in a finite plate floating on shallow water is investigated. It is shown that the wavelength or the phase velocity of the hydroelastic waves varies with the location in the plate. Received for publication on April 7, 1999; accepted on Aug. 20, 1999  相似文献   

20.
 This paper presents comparisons of computational and experimental fluid dynamics results for boundary layers, wakes, and wave fields for the Series 60 C B= 0.6 ship model in steady drift motion. The numerical method solves the unsteady Reynolds-averaged Navier–Stokes and continuity equations with the Baldwin–Lomax turbulence model, exact nonlinear kinematic and approximate dynamic free-surface boundary conditions, and a body/free-surface conforming grid. The experimental and computational conditions, i.e., Froude numbers of 0.16 and 0.316 for the experiments, and Froude numbers of 0 and 0.316 for the computations, allow comparisons of low and high Froude number results, respectively, which allows an evaluation of Froude number effects and validation of the computational fluid dynamics at both low and high Froude numbers. This article gives an overview of this numerical approach, and the computational conditions and uncertainty analysis are described. Results are presented for the wave and flow fields, with emphasis on the important flow features of drift- and wave-induced effects in comparison with the experiments. Finally, conclusions from the present study are given, together with recommendations for future work. Received: August 31, 2001 / Accepted: March 25, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号