首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 375 毫秒
1.
针对莫斯科-喀山高铁路基典型断面,基于非稳态相变温度场数学模型,考虑气候变暖的影响,结合沿线的气候条件,对路基地温进行数值模拟计算,分析路基10 a内地温分布及变化规律。分析结果表明:路基高度越高,施工期蓄热耗散过程越长。路基深度越深,地温周期性变化幅值越小。路基横向地温存在差异,路肩位置最大冻深普遍大于线路中心处,其差值最大可达1.1 m。路基最大冻深基本在2.0~3.5 m深度范围内。路基融化过程为双向融化,开始双向融化时刻约在4月初,融化期路基顶部、路肩及坡脚位置附近存在冻土核现象,由此提出设计和施工运营过程中,需密切关注路基冻深范围内冻土的土体性质变化以及横向地温差异可能导致的横向变形。  相似文献   

2.
青藏铁路自动温控通风试验路基观测结果分析   总被引:1,自引:0,他引:1  
自动温控通风路基(自控路基)是基于通风路基的一种新型工程措施,自控系统通过充分利用冷能,可在很大程度上提升通风路基的降温效能.青藏铁路北麓河试验段自控路基的现场观测资料表明,自控系统实施后,通过暖季对通风管内对流换热作用的限制,路基的传热方式以热传导为主,由此使得通风管内整体升温幅度均小于通风路基,自控路基通风管内温度较通风路基约低1.0℃,且中心温度最低;在自控路基中,路基下3.5 m深度原多年冻土上限附近的地温降温幅度更为显著,在自控措施实施后两年的时间里,通过与通风路基对比发现,两者最高温度在降温过程基本一致的情况下,最低温度差值呈现不断扩大的趋势,观测期内最大差值为0.45℃;路基下3.0~3.5 m位置的热流计算表明,自控路基对应的年均放热热流量约为通风路基的2倍,即从传热角度说明,通过自控系统的实施可以提高通风路基的降温效能1倍左右;同时,自控措施将通风路基有效放热时间增加约40 d,这也是自控路基降温效能表现突出的原因之一.  相似文献   

3.
结合青藏铁路清水河试验段试验,研究通风管路基的温度特性,根据通风管路基基底1m范围内和边坡位置及冻土上限位置热量周转和通风管内外温度,分析通风管路基对保护多年冻土的有效性。研究结果表明:青藏高原严寒的气候为通风管的适用性提供了环境条件;在路基中埋入通风管,不但增加了路基与空气的接触面,而且通过高原空气的强对流活动,消耗路基体中存在的热量,有效阻止路基表面吸收的辐射热量下传,起到了保护下伏多年冻土维持冻结状态的作用;通风管路基作为青藏高原多年冻土区的一种新结构形式,为青藏铁路的建设和安全运营提供了技术支撑。  相似文献   

4.
研究目的:通风管路基作为一种新型的路基结构,具有降低多年冻土地温抬升路基人为上限的性能,对多年冻土区铁路的建设及运营提供安全保证。本文结合青藏高原多年冻土区特殊的气候条件及空气流通特征,对通风管内空气对流形式进行分析,并通过传热学基本理论对多年冻土区通风管路基体的传热规律进行研究。研究结果:文章经过系统分析和研究,提出了青藏高原多年冻土区通风管路基的传热理论。认为青藏高原多年冻土区通风管路基的传热方式主要为空气的强迫对流、自然对流及热传导3种,并通过理论计算及试验得出使通风管路基达到最大功效的合理的长径比。  相似文献   

5.
针对目前我国高速铁路中普遍采用的32 m简支箱梁与CRTS II型无砟轨道结构,基于传热学基本理论,考虑太阳辐射与对流换热,采用ANSYS有限元软件建立箱梁-无砟轨道温度场仿真分析模型,分析整个结构在典型时刻的温度分布特征,并研究无砟轨道板、箱梁顶板、腹板和底板等典型位置处的温度随时间变化规律。基于温差最大时刻的结构温度分布,根据温度场数值仿真模型计算结果,拟合得到无砟轨道结构和无遮盖部分箱梁的竖向温度梯度分布模式,可为我国典型地区CRTS II型无砟轨道的温度应力计算提供参考。  相似文献   

6.
研究路基及周围土体温度的分布规律是分析季节性冻土地区路基稳定性的重要基础,结合哈齐客专DK221+150断面3 a的现场监测数据,分析了天然地表及路基不同位置的地温分布规律;建立温度场的仿真模型,研究温度沿深度方向的变化规律;利用实测数据验证模型,分析保温护道高度对路基温度场的影响。现场监测和模拟计算结果表明:护道对路基的边坡下部和坡脚处影响较大,能够有效减小冻深,但对路基中心的温度场影响不大。  相似文献   

7.
研究目的:通风管路基作为一种新型的路基结构,具有降低多年冻土地温抬升路基人为上限的性能,对多年冻土区铁路的建设及运营提供安全保证.本文结合青藏高原多年冻土区特殊的气候条件及空气流通特征,对通风管内空气对流形式进行分析,并通过传热学基本理论对多年冻土区通风管路基体的传热规律进行研究.研究结果:文章经过系统分析和研究,提出了青藏高原多年冻土区通风管路基的传热理论.认为青藏高原多年冻土区通风管路基的传热方式主要为空气的强迫对流、自然对流及热传导3种,并通过理论计算及试验得出使通风管路基达到最大功效的合理的长径比.  相似文献   

8.
青藏铁路多年冻土区普通路基地温监测及其预测分析   总被引:1,自引:0,他引:1  
青藏铁路多年冻土区局部地段以普通路基形式通过,其稳定性与铁路的正常运营密切相关。2002~2003年在北麓河布置了普通路基试验段,用于监测路基的温度状态。基于监测资料,分析路基边坡温度变化过程、路基及下部土体温度场分布以及进入多年冻土的热流量。结果表明,阳坡面年平均温度比阴坡面高2.9℃,阴坡面温度年较差比阳坡面大2.2℃。受地表温度边界条件控制,路基阳坡下土体融化深度明显大于阴坡,且路基下部土体处于升温状态。路基下部土体不同部位主要表现为吸热强度逐年略有减小的吸热状态。模拟计算50年气温升高1℃条件下路基温度场,结果表明50年后路基冻土上限下降明显,并且冻土温度主要介于0~-0.5℃之间。  相似文献   

9.
在多年冻土区修建铁路站场路基,打破了原来天然地表与外界的热力平衡,地下温度场将重新分布。利用测试仪器来获取测温变形数据,然后对数据进行处理,探讨站场路基的冻结和融化过程的规律,以及站场路基下温度场的变化规律。通过和普通宽度路基的对比分析,分析宽路基对路基下多年冻土的保护作用,并提出一些工程防治的建议。  相似文献   

10.
青藏铁路安多段多年冻土斜坡路基地温特征分析与预测   总被引:1,自引:0,他引:1  
通过对青藏铁路安多段多年冻土斜坡路基试验点地温的监测,分析2003年12月~2006年10月3个冻融周期内的地温变化特征,指出由于路基的坡向不对称与几何形态的不对称所导致的斜坡路基温度场呈强烈的不对称。从3年人为上限的变化看出,路基已基本进入热平衡状态;用有限元模拟路基修筑后2年的人为上限变化,与实测对比,验证了模型建立的合理性,并通过计算预测未来30年的温度场,得出多年冻土有向季节性冻土退化的趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号