首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
嵌入式无砟轨道具有养护维修工作量小、结构稳定等特点,还具有良好的减振降噪性能,特别适应城市轨道交通运营需求,广泛应用在现代有轨电车线路建设中.由于嵌入式轨道的结构特点,其优化重点在槽内结构型式及包覆钢轨的高分子复合弹性体.利用有限元软件ANSYS对嵌入式轨道进行动、静态分析.在拓扑优化的基础上,根据城市轨道交通成本、安全、噪声、振动等功能要求构建轨道结构功能优化目标函数,对嵌入式轨道槽内结构进行优化设计.研究结果表明:针对槽型轨减少靠近轨腰与轨底连接处的复合材料,可以在保证轨道刚度前提下,尽可能节省成本;考虑降噪性能、隔振效果高分子复合材料包覆钢轨高度不宜降低,即应使其完全包覆钢轨;一般地段承轨槽宽度宜在200~220 mm;对于隔振要求严格的区域,增大承轨槽宽度是提高轨道结构隔振效果最有效的手段;复合材料弹性模量选取时,在保证轨道横向刚度的前提下,减小轨道板混凝土结构的应力水平.   相似文献   

2.
为了研究整体道床轨道扣件刚度对钢轨垂向振动声功率特性的影响,建立了平面半轨道模型,利用谱元法计算了钢轨导纳,建立了轨道周期子结构模型,利用谱传递矩阵法计算了轨道衰减率;结合钢轨导纳和轨道衰减率计算结果,得到了单位简谐点激励作用下的钢轨声功率级,分析了扣件刚度对钢轨相对声功率级的影响. 研究结果表明:在单位简谐点激励作用下,中低频范围内的钢轨声功率级随着频率的增大而提高,在1/3倍频程中心频率800 Hz处,钢轨声功率级出现峰值;钢轨声功率级随着扣件刚度的减小而增大,但主要影响的频率范围为400 Hz以下;扣件刚度减小越多,钢轨声功率级增大越显著;扣件刚度的减小使得钢轨声功率级在钢轨弯曲共振频率处增加量最大,这是因为在该频率下钢轨导纳幅值增加量和轨道衰减率减少量均较大.   相似文献   

3.
嵌入式轨道钢轨倾覆性分析   总被引:1,自引:0,他引:1  
本文建立了有轨电车-嵌入式轨道承轨槽内部结构的三维实体有限元模型,分析其在荷载作用下的变形特征和轨头横移量,以及垂向荷载偏心距e、轨腰楔形块间距、高分子材料弹模、弹性垫板弹模等因素对嵌入式轨道钢轨倾覆性的影响.  相似文献   

4.
基于Timoshenko梁模型的车辆-轨道耦合振动分析   总被引:6,自引:1,他引:6  
运用车辆-轨道耦合动力学理论,建立了基于Timoshenko梁钢轨模型的车辆-轨道耦合振动模型,分析了钢轨的固有振动特性,初步探讨了车辆-轨道系统的动力响应,结果表明,Timoshenko梁钢模型在固有振动及强迫振动两方面均与Euler梁钢轨模型有明显不同,前者能更详细地描述钢轨的高频特性。  相似文献   

5.
掌握有轨电车交通荷载下路基动力响应特性是设计嵌入式轨道路基结构的关键技术前提.首先,考虑车体间铰接形式、轨道支承特点与路基阻尼影响,构建有轨电车-嵌入式轨道-土质路基耦合动力学模型;然后,以中国普通干线铁路轨道谱为激励,进行动力学仿真;最后,分析路基面承受车辆荷载特点,并讨论动应力放大系数的概率分布特征与沿深度衰减规律.研究表明:嵌入式轨道结构路基面动应力的幅值受轨道随机不平顺影响服从正态分布规律;在有轨电车轴重11 t、设计速度100 km/h、90%干线轨道谱条件下,路基面动应力放大系数服从正态分布N(1.008, 0.1002),超越概率30%的常遇动力系数为1.058,保证率为99.9%的极限动力系数为1.308;受路基材料阻尼影响,动应力放大系数沿深度线性衰减,阻尼增大,衰减趋势加剧;随着深度增加,动应力放大系数均值逐渐减小,由动力作用增大区略大于1过渡到动力作用减弱区小于1.  相似文献   

6.
钢轨振动由沿钢轨传递的各类导波构成,是铁路滚动噪声的主要贡献者. 为了研究铁路轨道的动力特性,分别基于铁木辛柯梁理论和波导有限元法建立了两种分析模型,推导自由波响应和受迫响应的求解过程,以波数、群速度、速度导纳和衰减率为指标,分析了两种模型条件下钢轨的波导特性. 研究结果表明:波导有限元模型包含了钢轨横截面所有的变形特征,可表征6 kHz内钢轨中的8种导波及其特性,反映导波波型交换、群速度互换的现象,以及高阶导波激发引起的导纳峰值;铁木辛柯梁模型可识别包括弯曲波、扭转波和纵波在内的5种钢轨导波,无法揭示截止频率在1.5 kHz以上与钢轨截面变形相关的导波;铁木辛柯梁模型可给出2 kHz内合理的钢轨垂向原点速度导纳计算结果.   相似文献   

7.
目前工程实践采用的纵向轨枕结构轨下垫和纵向轨枕枕下减振垫的布置模式,一般为2-1-2-1布置(每布置2个扣件布置1个枕下垫)即轨下点支承纵向轨枕轨道模式,文章基于现有的纵向轨枕模型提出设想,设计运用一种新型橡胶减振垫用于填补在钢轨下部,使得钢轨与橡胶减振垫接触并以此分散作用于钢轨上的轮轨力,从而达到减振的效果,建立两种不同的纵向轨枕结构形式的力学简化模型,借助于有限元理论编制程序,对轨下连续支承纵向轨枕轨道和点支撑纵向轨枕轨道进行钢轨和轨枕的受力以及位移大小进行比较,得出纵向轨枕连续支承轨道结构在分散钢轨力和减小钢轨位移具有一定的效果。  相似文献   

8.
为了给涵洞地段道砟垫的设计和优化提供理论依据,根据轮轨系统耦合动力学理论和有限元方法,建立了车辆-轨道-涵洞垂向耦合振动模型;采用大型通用显式动力分析程序LS-DYNA分析道砟垫对轨道和涵洞动力响应时频特性的影响,并对道砟垫的合理刚度进行了研究.结果表明:采用道砟垫不会加剧轮轨动力作用和影响行车安全,而且可显著减小涵洞的动力响应;道砟垫对钢轨振动的影响不大,对轨枕振动有一定减振作用,但对道砟振动有不利影响;道砟垫的合理面刚度为50~100 MPa/m.  相似文献   

9.
小半径曲线轨道往往会加剧钢轨的磨耗与振动,影响列车的安全性和舒适度,增加维修养护的工作.文章以台湾铁路沙仑支线中洲车站端的爬升曲线为监测地点,在曲线前后端安装钢轨涂油器,进行为期6个月轨旁钢轨振动和磨耗的观测测量;分析小半径曲线轨道在润滑前后,列车经过时钢轨的磨耗和振动变化,观察涂油技术对钢轨磨耗和振动的影响.  相似文献   

10.
为了减少轨道沉降和养护维修成本,目前的高速铁路和重载线路都开始用无碴轨道来代替传统的有碴轨道系统。钢轨嵌入式轨道结构是由Holland Railconsult公司开发的一种使用在软土地区的新型无碴轨道系统。这种结构是由铺设在地面上的连续混凝土箱型梁构成。轨道直接固定在混凝土箱型梁上,如图1所示。该种轨道结构符合重力平衡原则:结构的重量不超过开挖土体的重量,以不增加结构恒载。钢轨嵌入式轨道结构刚度很大,可以减少不均匀沉降和振动。  相似文献   

11.
无碴轨道动力学理论及应用   总被引:2,自引:0,他引:2  
根据车辆-轨道耦合动力学理论,建立了列车与路基上无碴轨道空间耦合动力学模型.模型中将钢轨视为弹性点支承基础上的Bernoulli-Euler梁,将轨道板及混凝土底座视为弹性基础上的弹性薄板.推导了路基上无碴轨道的运动方程.用上述模型及方程分析了遂渝线无碴轨道综合试验段路基上板式轨道及过渡段的动力学性能.结果表明,快速客车、重载以及普通货车通过路基上板式轨道时,轮轨垂向力、轮轨横向力、脱轨系数、轮重减载率、以及CA砂浆和路基面动应力等动力学指标均小于许用值.该无碴(板式和双块式)轨道与有碴轨道过渡段在客运列车作用下钢轨挠度变化率均小于许用值(0.300mm/m),在货物列车作用下略大于许用值.  相似文献   

12.
采用触发采集方式现场实测了某下沉式地铁车辆段咽喉区钢轨、道床、地面、楼板及盖板的振动加速度, 采用插入损失、1/3倍频谱、Z振级曲线拟合等方法分析了现场实测数据, 进而分析了下沉式地铁车辆段咽喉区的振源特性与地铁振动沿盖板和不同层楼板的传播规律。分析结果表明: 在频域上, 钢轨比道床振动频带更宽, 没有明显的主频段, 其振动分布在800 Hz以内, 道床则有明显的主频段, 主要分布在80~200 Hz; 下沉式地铁车辆段地下1、2层钢轨至道床振动衰减幅度分别约为29.9、10.4 dB; 列车引起盖板的振动响应随测点与行车轨道中心线距离的增大呈线性衰减规律, 其线性衰减率约为0.2 dB·m-1; 由于边墙对振动的反射与折射, 振动传至盖板端部时出现局部放大现象; 列车无论在地铁车辆段端部还是在中间股道行车, 随着测点与行车轨道中心线距离的增大, 车辆段盖板振级在2.5、5.0 Hz低频处基本不变, 在10 Hz处衰减缓慢, 在25、40、80 Hz中高频处衰减明显; 列车在地下1、2层行车时诱发的振动的向上传播呈逐层衰减规律, 列车在地下1层行车引起的盖板振动比其在地下2层行车时大约16.1 dB; 下沉式地铁车辆段咽喉区轨道接头多、道岔多的特点导致该区域盖板车致振动响应突出, 需重点对该区域进行减振设计。   相似文献   

13.
客货共线条件下CRTS I型板式无砟轨道CA砂浆与轨道板普遍存在离缝,为了得到CA砂浆离缝高度对轨道结构动力响应的影响规律,基于车辆-轨道耦合动力学以及子结构模态叠加法,将ANSYS计算的轨道部件子结构的自振特性输入SIMPACK,使用力元连接轨道各部件形成轨道系统,通过轮轨接触面及柔性钢轨节点间的位移和力的数据传递,实现列车和轨道子系统的耦合,建立了含CA砂浆离缝的CRTS I型板式无砟轨道的垂向耦合模型,研究了客货混运条件下CA砂浆离缝高度对轨道结构动力响应的影响. 研究表明:随CA砂浆离缝高度增大,钢轨动态位移、轨道板振动响应及CA砂浆动应力均显著提高;当CRH380通过,板端离缝高度为1.0 mm和2.0 mm时,钢轨位移分别增大了0.24 mm和0.27 mm,轨道板在25 Hz处振级分别增大了21.0 dB和21.7 dB,离缝根部砂浆最大动应力均达到0.2 MPa,离缝高度超过1.0 mm后,离缝高度对轨道结构动力响应的影响趋于平缓;当SS7E通过,板端离缝高度为1.0 mm和2.0 mm时,钢轨位移分别增大了0.48 mm和0.66 mm,轨道板在8 Hz处振级分别增大了15.5 dB和19.4 dB,离缝根部砂浆动应力分别达到0.24 MPa和0.36 MPa,离缝高度超过1.0 mm后,离缝高度对轨道结构动力响应的影响仍有较大的增长.   相似文献   

14.
为探明我国某地铁线路弹性短轨枕轨道曲线钢轨短波长波磨萌生原因,采用现场试验和数值仿真方法对其开展了研究. 首先,通过现场试验确定钢轨波磨波长与轨道动态特性对应关系;其次,利用车辆-轨道耦合动力学模型计算轮轨接触参量,通过力锤敲击法获得现场轨道导纳特性;最后,基于轮轨接触参量和轨道导纳结果,建立钢轨波磨频域线性分析的数值模型,模拟弹性短轨枕轨道频域下曲线钢轨磨损率特征,分析了弹性短轨枕轨道萌生特定波长波磨原因. 研究结果表明:地铁弹性短轨枕轨道钢轨波磨主要出现在半径小于等于800 m曲线段,低轨波磨程度更为显著,波长为50~160 mm,通过频率为140~280 Hz;轨道在160~210 Hz频率范围的模态振型表现为钢轨和轨枕一起相对轨道板垂向弯曲振动,在250~300 Hz频率范围的表现为钢轨和轨枕垂向反向振动,波磨通过频率与该轨道的160~300 Hz共振频率相近. 弹性短轨枕轨道特定波长波磨萌生主要与其轨道垂向固有特性相关,其波磨特征为频率固定型,波磨波长随车辆运行速度变化而变化.   相似文献   

15.
为研究城市轨道交通高架线路敷设阻尼钢轨前后列车通过时段噪声变化规律,以敷设了阻尼钢轨的广州某高架线路为研究对象,通过对高架线路敷设阻尼钢轨前后轨道旁、距行车轨道中心线7.5和30 m处测点进行现场噪声试验,分别从时域统计、频谱和插入损失等方面分析了高架线路改造全过程,包括换轨前、换轨后、刚敷设阻尼钢轨及敷设阻尼钢轨运营半年后列车通过时段噪声变化规律。分析结果表明:换轨和敷设阻尼钢轨作为源头上的降噪措施具有一定的降噪效果,噪声源强处2种措施分别降噪1.1、2.9 dB(A),敷设阻尼钢轨能降低钢轨Pinned-Pinned振动辐射产生的噪声;换轨前高架线路列车通过噪声能量主要集中在100~3 000 Hz,分别在100~125 Hz和2 000 Hz附近出现第1、2个峰值,换轨后、刚敷设阻尼钢轨及敷设阻尼钢轨运营半年后的列车通过噪声能量主要集中在500~2 000 Hz,峰值频率出现在800 Hz附近;高架线路整个施工改造过程中60 Hz以下低频噪声变化较小,60 Hz附近的频率为轮轨系统的固有频率,高架线路改造并未使轮轨系统固有特性发生较大改变;敷设阻尼钢轨运营半年后相比刚敷设阻尼钢轨时,在距轨道中心线7.5和30 m处,1 000 Hz以上高频噪声变化较小,桥梁局部结构振动产生的辐射噪声(100~300 Hz)出现了一定的增大。   相似文献   

16.
将车轮和轴箱分别简化为集中质量和转动惯量,用连续弹性Timoshenko梁模拟变截面车轴,建立弹性轮对与轨道耦合垂向动力学模型,分析车轴动态刚度与轮轨作用力、车轴自身振动特性和车轴动应力的相互关系。发现:轮对的一阶和二阶固有频率分别由76.34Hz和130.03Hz降低到53.68Hz和100.02Hz,车轴的一阶模态振动加速度和弹性振动位移分别增加60.12%和92.21%,轮轨动作用力增加6.23%,车轴轮座内侧和轴颈危险截面的动应力分别增加39.30%和34.13%。分析结果表明:轮轨动作用力和车轴的动应力随着车轴动刚度的降低而增加,因此,提高轻量化轮对的固有频率和动态刚度能保证高速列车安全运行和提高车轴疲劳强度。  相似文献   

17.
为了提升浮置板轨道的减振效果,阻碍浮置板垂向振动能量向轨下基底的传播,提出了一种基于声子晶体局域共振机理的浮置板轨道隔振器. 运用有限元方法研究了声子晶体隔振器的局域共振带隙特性,并验证了带隙频率范围内声子晶体隔振器对振动的抑制作用;计算了声子晶体隔振器的垂向刚度,建立了三维声子晶体隔振器浮置板轨道有限元模型;计算了整体结构的力传递率与基础加速度响应,并与传统钢弹簧浮置板的计算结果进行了对比. 研究结果表明,声子晶体隔振器存在声子晶体局域共振带隙,对50~150 Hz频带内的振动有抑制作用;声子晶体隔振器与传统钢弹簧垂向静刚度相近,均为6.0 kN/mm;保留了钢弹簧浮置板轨道的低固有频率隔振性能,并且在50~120 Hz频带具有带隙抑制特性,在51 Hz附近力传递率可减小10 dB左右;基础加速度响应在51~150 Hz频带内明显小于普通钢弹簧浮置板轨道,其中51~60 Hz频带内基础加速度相比钢弹簧浮置板轨道减小30%左右. 因此声子晶体隔振器有助于提高浮置板轨道的减振性能.   相似文献   

18.
高架轨道结构振动特性分析   总被引:1,自引:0,他引:1  
目前高架轨道是城市轨道交通的主要结构型式之一,为分析其结构振动特性,通过建立高架轨道垂向振动解析梁模型和有限元模型,采用动柔度法计算高架桥速度导纳和轨道速度导纳,并分别考虑桥梁支座刚度、桥梁截面形状对高架桥振动的影响以及高架桥基础和扣件刚度对轨道结构振动的影响。结果表明,桥梁支座刚度和截面形状在低频段对高架桥的振动有较大的影响,在高频段影响较小;高架桥结构对轨道的振动在20 Hz以下有明显的影响,在20 Hz以上基本没有影响;提高扣件刚度有利于减小轨道的竖向振动,但同时增大了轨道的固有频率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号