首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高铁无砟轨道对膨胀变形值要求极为严格,地基的胀缩变形不仅对行车安全性和舒适性产生威胁,而且严重影响高速铁路线路的服役状态和使用寿命。膨胀土地基均为原状膨胀土,为研究原状膨胀土的膨胀规律,以兰新铁路第二双线一处典型原状膨胀土为对象,对3种不同厚度的膨胀土分别进行不同上覆荷载和不同含水率下的膨胀变形试验。研究结果表明:膨胀土的厚度越大,其膨胀量越大;上覆荷载对膨胀量起抑制作用,荷载越大膨胀量越小,荷载越小膨胀量越大;土样的膨胀量随含水率的增加可分为缓慢增长阶段、急速增长阶段和缓慢增长阶段;在厚度一定时,建立含水率增量与上覆荷载耦合情况下原状膨胀土膨胀量计算模型,再依据不同厚度对公式参数进行拟合。建立含水率、上覆荷载和厚度3因素耦合作用下原状膨胀土膨胀量计算模型,模型计算结果与实测数据吻合较好,为今后膨胀土地区高速铁路的修建提供一定的理论支撑。  相似文献   

2.
以兰新铁路第2双线一处典型原状膨胀土为对象,通过进行厚度为5,10,15和20 cm不同含水率下膨胀量试验,得出原状膨胀土在不同厚度及不同含水率下过程膨胀量,研究含水率和厚度对原状膨胀土过程膨胀量的影响。试验结果表明:厚度一定时,含水率越小原状膨胀土的过程膨胀量越大,含水率越大原状膨胀土的过程膨胀量越小;含水率较低时,厚度对原状膨胀土的过程膨胀量影响较大,含水率较高时,厚度对原状膨胀土过程膨胀量影响较小,通过对试验数据的进一步分析发现,在厚度一定时,含水率和原状膨胀土的过程膨胀量呈良好的对数关系,依据不同厚度对公式参数进行拟合,建立含水率和厚度耦合作用下原状膨胀土过程膨胀量计算模型,模型计算结果与实测数据吻合较好,为今后膨胀土地区的工程建设提供一定的理论支撑。  相似文献   

3.
以兰新高铁一处典型原状膨胀土为对象,通过对膨胀土进行初始含水率为6%,厚度分别为2、4、6 cm及0、10、20、30、40、50 kPa不同上覆荷载下膨胀量试验,以研究厚度和上覆荷载对原状膨胀土膨胀量的影响。试验结果表明:随着上覆荷载的增大,膨胀量逐渐减小,因而膨胀土地基的膨胀变形主要发生在浅层膨胀土;原状土膨胀量随着厚度的增加而增加,且为非线性关系;对试验结果进行拟合,得到膨胀量随上覆荷载及厚度变化关系拟合关系式,为今后膨胀土地区工程建设提供理论支撑。  相似文献   

4.
现有铁路规范中判定为无膨胀性的低黏土矿物含量泥岩仍具有膨胀性,其膨胀对变形精度要求极高的无砟轨道高速铁路具有潜在的破坏作用。以出现上拱病害的兰新二线无砟轨道地基中的低黏土矿物含量泥岩为研究对象,进行不同土样厚度和不同含水率条件下原状土和重塑土的无荷膨胀量的对比实验。研究结果表明:膨胀土的吸水膨胀过程可以分为3个阶段:吸水加速膨胀阶段,缓慢膨胀阶段,最后稳定阶段;在相同条件下,重塑土的膨胀量大于原状土的膨胀量;与重塑土相比,原状土的吸水膨胀速度较慢;土样厚度成比例增加时,最终膨胀量并不成比例增加,并且根据实验结果拟合出了在含水率和土样厚度耦合作用下的原状土和重塑土的膨胀量比值公式。  相似文献   

5.
基于晶格扩张理论和双电层理论,诠释了膨胀土膨胀力形成机理,分析膨胀力的性质并重新定义了膨胀土膨胀力。采用连续吸水膨胀力试验仪器对呈贡、成都膨胀土的膨胀力进行试验研究。试验结果表明:随着膨胀土的吸水量增加,不同初始含水率的膨胀土膨胀力随吸水量增加而线性增加,在一定临界吸水量之后急剧增加;且初始含水率越低,膨胀力急剧增长时所需的临界吸水量越大。  相似文献   

6.
为研究水在不同渗流方向下对高速铁路无砟轨道泥岩地基膨胀性及渗透性的影响规律,以兰新高铁DK1345+200里程为试验点,借助自主研发的测试仪器,进行在不同上覆荷载下膨胀变形及水平、竖向渗流原位试验.结果表明:不同荷载下泥岩膨胀量随注水时间的变化呈"S"形分布;泥岩膨胀受上覆荷载的约束作用,荷载越大,泥岩膨胀受到的约束作...  相似文献   

7.
基于GDS循环动三轴试验,首先对比了不同形式的动荷载作用效果,结果表明偏压正弦波模拟列车循环荷载效果较好。然后研究了初始固结度和加载频率对地铁荷载作用下软黏土动力特性的影响,结果表明:排水加载条件下原状土孔压发展趋势分为2个阶段,第1阶段孔压迅速上升,达到峰值后进入第2阶段,表现为孔压下降且降速渐缓并趋于稳定;初始固结度越大,土样的累积峰值孔压越小,孔压消散时间越短;原状土应变发展呈现稳定型,固结度越低,轴向应变越大,应变稳定所需时间越长;且低频引起的累积应变较大,工程中应予以重视。提出的孔压及应变模型可较好地模拟列车荷载作用下不同固结度的原状软黏土的动力特性规律。  相似文献   

8.
南水北调禹州段压实膨胀土膨胀性试验研究   总被引:1,自引:1,他引:0  
以南水北调中线禹州段压实膨胀土为研究对象,通过对压实膨胀土样在不同初始状态下的含水率、干密度和竖向荷载的研究,并用多元线性回归的分析方法,提出了压实膨胀土的膨胀变形随初始含水率、干密度、竖向荷载这三个因素的变化规律,同时获得膨胀力随初始含水率和干密度这两个因素的变化规律。本文总结出压实膨胀土的膨胀变形和膨胀力的计算公式,并对计算公式进行了试验验证,证实了计算公式的正确性。试验结果表明,在实际工程中可以通过少量的试验得到计算公式的参数,并用文中提出的计算公式直接计算出膨胀量和膨胀力的值,以预测膨胀土体对工程可能产生的潜在危害。  相似文献   

9.
以兰新高铁一处典型膨胀泥岩路段为研究对象,在此现场取样,室内自制试验箱进行厚度分别为20,40和60cm的泥岩地基膨胀模型试验研究。研究结果表明:随着注水量和时间的增加,地基膨胀量整体呈外凸弧线增长;含水率小的地基膨胀潜势大,地基易膨胀,含水率大的地基反之;不同深度处的泥岩膨胀量不同,随着深度的增加,膨胀量逐渐减小;不同厚度地基含水率与膨胀量均呈良好指数关系;对地基膨胀量与含水率及地基厚度耦合作用下的计算模型进行探讨,计算模型所得膨胀量与实际室内试验量测数据拟合良好。研究成果可为膨胀泥岩地区高速铁路修建提供参考依据,对该地区同类工程建设具有借鉴意义。  相似文献   

10.
随着我国高速铁路飞速发展,将涌现出大量以弱膨胀性泥岩为地基的高速铁路工程。由于高速铁路无砟轨道对路基变形要求极为严格,而弱膨胀性泥岩地基引起的高速铁路路基上拱研究鲜有报道,通过人工浸水方式在兰新高速铁路的路基上拱地段开展不同上覆荷载下弱膨胀性地基泥岩现场原位浸水试验,分别研究0、15、30、45 kPa 4种上覆荷载下泥岩横向渗透速率及竖向膨胀量。试验研究结果表明:泥岩浸水时横向体积含水率表现为稳定、骤增、减速增长和渗流稳定四个阶段;同一横向位置处,下部土体渗透稳定含水率大于上部土体;膨胀量随浸水量呈"S"型变化,且上覆荷载较大时会出现下沉现象;横向渗透速率随上覆荷载增加而减小,且横向渗透速率与横向渗透距离为非线性关系;提出以横向相对渗透衰减率100%作为控制标准确定高速铁路路基上拱临界荷载的设计思路。  相似文献   

11.
合肥地铁车站基坑膨胀土有荷条件下的变形规律研究   总被引:1,自引:0,他引:1  
为了考察合肥地区膨胀土的膨胀特性,选取合肥地铁车站基坑膨胀土进行了击实土样的有荷膨胀率试验,研究膨胀土的膨胀时程曲线特征及其有荷膨胀率与初始含水率、压实度、荷载的关系。试验结果表明:有荷膨胀时程曲线可分为等速膨胀、减速膨胀、缓慢膨胀阶段,初始条件不同膨胀时程曲线特征也不同;有荷膨胀率随初始含水率的增加而线性降低,有荷膨胀率与荷载的对数呈线性关系;压实度对有荷膨胀率的影响不显著。  相似文献   

12.
以需要采用当地粗颗粒盐渍土作为路基填料的路基工程为背景,在人工配制试验土样的基础上,选取典型粗颗粒盐渍土地区的砾砂类硫酸盐渍土,进行不同含盐量、含水率及初始干密度条件下上覆荷载对砾砂类硫酸盐渍土路基盐胀的影响规律研究。结果表明:在上覆荷载的作用下,不同含盐量条件下砾砂类硫酸盐渍土的盐胀率均随上覆荷载的增加而降低,且降幅较大;上覆荷载对低含盐量水平的砾砂类硫酸盐渍土抑制效果好于高含盐量水平;在严格控制含水率的工况下,当上覆荷载超过24.46~38.61kPa以后,上覆荷载对盐胀的抑制作用起主导作用。在标准压实度条件下,不同含水率下50kPa上覆荷载对天然砾砂类硫酸盐渍土盐胀量的抑制作用超过85%,且在高含水率下的盐胀抑制作用较强,可明显减小随含水率增大的盐胀增长率。  相似文献   

13.
利用平衡加压法在云桂高速铁路典型中-强膨胀土路段进行竖向膨胀力原位试验,研究竖向膨胀力随时间、含水率增量、卸荷回弹量的变化规律,并对试验过程中试验体周边地表的变形进行了监测。结果表明:竖向膨胀力随时间的变化规律与膨胀土中渗水通道的畅通情况密切相关;竖向膨胀力随含水率增量的变化规律可分为4个阶段,即初始线性增长阶段→过渡阶段→二次线性增长阶段→稳定阶段;卸荷时,膨胀土竖向回弹变形增加,竖向膨胀力不断减小,二者呈线性或二次曲线性变化;试体周边地表的隆起规律与竖向膨胀力随含水率增量的变化规律相一致。  相似文献   

14.
南宁膨胀土变形时程性研究   总被引:9,自引:0,他引:9  
研究膨胀土变形随时间的变化,通过对2组南宁膨胀土进行室内单向膨胀收缩试验,对膨胀土的线胀率和线缩率的时程性进行了研究。根据初始含水量及干密度不同情况下膨胀土有荷膨胀和收缩变形的时程性研究,得到以下结果:在半对数坐标下,线胀率曲线可分为三个阶段且该曲线与时间呈双曲关系;在双对数坐标下,线缩率和时间几乎呈线性关系。同时,结合回归分析给出本次试验研究的膨胀土的膨胀和收缩随时间变化的变形计算公式,并对得到的膨胀盟收缩曲线进行了拟合,精度很好。结合冬次研究,对膨胀土的变形机理从微观的角度进行分析并对不同压力及初始含水率对膨胀、收缩变形特征的影响进行了阐述。研究结果为分析膨胀土变形的时程特性提供了可靠的技术依据。  相似文献   

15.
循环荷载下粉土路基土的变形性状研究   总被引:1,自引:0,他引:1  
为探讨铁路既有线粉土路基的工作性状及病害机理,通过室内动三轴试验,研究不同密实度、不同含水率粉土路基土在不同动应力水平下的循环累积塑性变形规律。结果表明:循环荷载下粉土路基土的累积塑性变形随动应力的增加而增大,随试样含水率的降低而降低,随压实系数的增大而减小,且动应力水平越高、含水率越大、压实系数越小,变化趋势越明显;在既有线路基动应力水平范围内及路基土处于饱和含水率状态下,可用粉土路基土的压实系数0.93作为路基土破坏形态的分界点;粉土路基土的临界动应力约为静强度的50%。基于试验结果,以Monismith指数模型为基础,引入路基动应力与静极限抗剪强度的应力比系数,建立了能同时考虑动应力和土体物理状态条件的路基土循环累积塑性变形预测模型。模型计算值与试验值吻合较好,说明该模型能较好地预测粉土路基土的循环累积塑性变形。  相似文献   

16.
南宁轨道交通1号线采用盾构法穿越膨胀岩分布区。考虑不同岩层组合对列车振动荷载与膨胀力共同作用下隧道管片与围岩的动力响应进行数值模拟分析。结果表明:距离管片越远列车振动荷载引起的沉降越小;荷载条件相同时岩土体阻尼比越小受列车振动荷载影响越大,因而产生的沉降越大;不同岩层组合条件下隧底相同位置的位移、速度、加速度和竖向应力时程曲线均在加载初期突变,在施加的列车振动荷载稳定后近似呈简谐波动形式;隧道腰部所受的竖向应力最大,顶部所受的竖向应力最小。  相似文献   

17.
含水率、围压、压实度、初始静偏应力和循环荷载作用频率是影响动弹性模量和阻尼比的重要因素,通过动三轴试验分析这些因素对砾类土动弹性模量和阻尼比的影响并得出了相关规律,围压和压实度越大,含水率越接近最佳含水率,动弹性模量越大,阻尼比越小。0~10 kPa范围的初始静偏应力对砾类土的动弹性模量和阻尼比影响较小。循环荷载作用频率在1~2 Hz变化时,砾类土的动弹性模量和阻尼比也变化较小。给出了砾类土的动弹性模量幂函数模型参数,得出不同条件时模型参数的变化规律。  相似文献   

18.
以蒙华重载铁路改良膨胀土路基试验段为依托,针对水泥改良土路堤、石灰改良土路堑两种形式路基开展不同轴重、不同干湿状态下现场激振试验,分析动应力、动加速度分布特征及振动累积变形发展规律;通过室内动三轴开展素膨胀土、水泥改良土、石灰改良土分别在4个不同含水率和4种不同应力水平下动力湿化变形试验,研究湿化幅度、动应力幅值对膨胀土及改良土累积应变特性的影响规律。研究结果表明,动应力和动加速在基床底部衰减率可达80%,且路基刚度越大,动应力、加速度沿路基深度衰减越快;同一深度下动力响应浸水状态大于干燥状态,且轴重越大,影响更为显著,湿化作用显著削弱路基对动应力与动加速度的衰减能力,水泥改良土抗浸水能力相对石灰改良土更强;路基面累积变形在浸水后随轴重和振动次数增加而增加,且在相同振次情况下,素膨胀土及其改良土累积应变均在湿化幅度超过2%后急剧增加,且动应力越大,应变增长速率越快,改良土累积变形速度仅为素膨胀土的1/8~1/5,石灰与水泥改良后均可有效抑制膨胀土的湿化变形;基于动三轴试验数据,建立累积应变的预估模型,得出素膨胀土及改良土模型参数与湿化幅度之间的经验关系。  相似文献   

19.
通过试验获得了河南省平顶山膨胀土原状土样的线缩率、膨胀率和膨胀力等性能参数;对重塑土样进行了不同压力、含水量和干密度条件下的膨胀率试验,膨胀力、渗透系数试验,及反映抗剪强度的黏聚力和内摩擦角试验,为研究平顶山膨胀土的变形和稳定性提供了基础资料。用粉煤灰对平顶山膨胀土进行改性处理,通过室内试验研究了不同掺量情况下土样的工程性质,结果表明:在处理到最佳状态时,改良土样仍具有弱膨胀性。  相似文献   

20.
南宁膨胀土膨胀变形规律的试验与应用研究   总被引:2,自引:0,他引:2  
通过不同初始干密度、初始含水率在不同垂直压力下的膨胀变形试验,研究南宁膨胀土的膨胀量与初始干密度、初始含水率以及垂直压力的相关关系。研究结果表明,膨胀量随初始干密度的增大而增加,随初始含水率和垂直压力的增加而减小;通过回归分析发现,膨胀率与初始干密度和初始含水率成线性关系,而与垂直压力成半对数线性关系。在此基础上,建立了南宁膨胀土膨胀率的三元回归方程,并通过某大型模型试验验证了该方程的正确性与实用性。本文所建立膨胀率三元回归方程为简便而准确地预测和估算膨胀土地基的膨胀潜势和差异隆起提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号