首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
列车空调卧铺包厢不同送风方式热舒适模拟研究   总被引:2,自引:0,他引:2  
采用k-ε湍流模型,对不同尺寸的散流器风口、条缝风口送风方式下全封闭和不封闭4人卧铺包厢的三维空气流场和温度场进行了数值计算,利用PMV(Predicted Mean Vote)和空气龄(age of air)指标分析优化各通风方式下车厢内上、下铺位人体的热舒适性,讨论不同工况下各送风方式的空调效果。根据数值模拟结果,包厢封闭时,按照厢内人体区的气流组织效果,条缝风口送风优于散流器送风方式;包厢不封闭时,各种送风方式均引起冷热不均现象,条缝风口送风引起上、下铺人体头部、手臂外侧区温度偏低,散流器送风人体内侧区温度偏高。  相似文献   

2.
本研究针对某工业建筑高大空间内部通风与气流组织,采用CFD模拟仿真技术,对建筑物内温度、速度、空气龄等舒适性指标进行对比分析。结果表明,建筑物内冬季温度均在5℃以上,夏季温度基本维持在28℃左右,全年风速在1 m/s左右,对于工作人员而言可以接受,同时又不过度加大送排风量,实现节能减排;建筑中间区域空气龄较小,基本在10 min以内即可排出,能较好地保证生产制造区域空气卫生条件和舒适度。本工程采用上送上回方式可有效保证建筑内经济、舒适的生产条件。  相似文献   

3.
空调硬卧车内人体热舒适性研究   总被引:6,自引:1,他引:5  
针对目前空调硬卧车内气流分布不均匀,不同铺位的乘客对车厢内的热舒适感差别较大这一现状,采用计算流体动力学对空调硬卧车内流场和温度场进行了数值模拟,研究了空调硬卧车内空气流动速度和温度分布规律及热舒适评价指标PMV和人体吹风感指标PD分布状况。研究结果对于改变目前车厢内上、中、下铺气流分布不均的现状,改善车厢内人体热舒适环境提供了理论依据。  相似文献   

4.
旅客列车空调硬座车厢内热舒适性研究   总被引:1,自引:1,他引:0  
空调车内气流组织研究是车厢内环境控制的基础,合理的气流组织可有效地改善乘客的热舒适性。采用k-ε湍流模型,对载客车厢内三维空气流场和温度场进行了数值计算,在此基础上利用PMV(Predicted Mean Vote)指标分析了车厢内人体热舒适性。计算结果表明:在现有的条缝送风条件下,除车厢中部和两端外,车厢内气流分布比较均匀;由于回风口位于车厢两端,车厢中部和端部PMV分布不同,端部人体热舒适感较好,中部较差;座位区由于人员集中和受太阳照射的影响,温度较高,PMV值偏大;过道区温度适中,人体热舒适感较好。研究结果对空调车内气流组织优化设计和改善人体热舒适环境有一定参考价值。  相似文献   

5.
武汉地铁3号线列车空调系统采用中顶孔板与侧送风口相结合的送风方式,通过实车测试分析和数值模拟仿真分析的方式,分析了这种新型送风方式下车厢内的热舒适环境。测试结果表明:在距车厢地板高度0.5 m、1.2 m、1.7 m截面处的风速在0.35 m/s左右,车厢内任意两点处的温差小于3℃,车厢内环境满足列车空调系统设计规范。数值模拟仿真结果表明:列车空调系统采用中顶孔板与侧送风口相结合的送风方式,乘客的热舒适性较好,能够有效解决格栅送风方式中乘客吹风感的问题,提高了乘客乘坐的舒适性。  相似文献   

6.
运用CFD(计算流体动力学)软件研究送风格栅和中顶孔板与侧送风口两种送风方式对车辆客室热舒适性的影响。基于车辆客室不同截面的气流速度云图、温度云图、舒适性指标云图等数值结果,分析了车辆空调不同送风方式对车辆客室热舒适性的影响。结论为:在客室1.7 m高度处,采用中顶孔板与侧送风口送风时,整体的热舒适感有优势;在人体座位区域1.1 m高度处,采用格栅送风时,热舒适会更好。  相似文献   

7.
介绍了地铁车辆客室送风道的结构设计和安装方式,提出了地铁车辆客室多方位送回风系统的概念,采用计算流体力学方法对送风道内流场和客室流场进行数值模拟。研究结果表明,采用了多方位送回风系统后:送风道各出口预测风量与理论风量偏差在15%之内,出风均匀性良好;客室人员活动区域速度场与温度场分布均匀,微风速在0.20~0.42 m/s之间,断面垂直温差在3℃以内。地铁车辆采用多方位送回风系统,既提高了座椅区域与门区乘客的舒适性,又降低了客室中部的风速,缓解了乘客的吹风感。  相似文献   

8.
杨培志  顾小松 《铁道学报》2006,28(4):109-113
列车车厢内空气品质的优劣与旅客实际得到的新风量密切相关。笔者以YW25G型空调硬卧列车车厢为研究对象,在物理模型中考虑了旅客以及车厢内各障碍物(包括边桌、行李架、床铺、折座)等对流场的影响,采用κ-ε湍流模型及数值模拟的方法,对硬卧车厢内流场及空气龄的分布变化规律进行研究,从而得到车厢内的换气效率。研究结果表明:车厢内的换气效率基本符合室内空气品质的要求;整个车厢内流场及空气龄关于隔间存在良好的对称性;旅客区域的空气品质优劣排序依次是:下铺区域、中铺区域、上铺区域;气流组织的合理分布能够缩短空气龄,改善室内空气品质。研究结果对如何提高车厢内换气效率及空气品质提供了重要参考。  相似文献   

9.
通过利用多孔介质一维"多孔跳跃"模型和标准k-ε方程模型相结合的方式,研究车辆客室顶部侧送格栅风口送风角度、顶部侧送格栅风口位置及送风口风速。通过仿真模拟,比较分析典型截面处的热舒适性指标PMV(预测平均热感觉)和PPD(预测不满意百分率)。结论为:车辆客室上部格栅侧送风口建议采用与车辆客室上部格栅顶送风口错开的布置方式,格栅方向与列车地板水平面成45°夹角,风口风速为1 m/s。  相似文献   

10.
低空气湿度对空调车厢热舒适性的影响   总被引:1,自引:1,他引:0  
分析了轨道交通车辆车厢内空气湿度及温度变化时对PMV值的影响.还给出了PMV-PPD的计算结果,结果表示当车厢空气温度范围是16~20 ℃时,湿度的降低,使热舒适性差;21~25 ℃时对热舒适性影响不大,冬季一般控制在18 ℃左右,在不能提高车厢内温度的前提下,建议增加空气加湿设备以提高车厢内的热舒适性.  相似文献   

11.
轨道车辆客室内的气流组织直接影响乘客乘坐的舒适性。静压箱孔板送风具有结构简单、送风温度和速度均匀等优点,适用于区域温差和工作区风速要求严格的场所。但是由于轨道车辆空间有限,静压箱稳压层的高度受限,容易造成静压箱内静压不均匀,影响孔板送风的均匀性;而顶棚两侧由于存在一定的密封区域,对宽度方向上的送风均匀性也有一定的影响。本文采用1∶1等比例模型试验的方法,针对一种运用在磁悬浮列车上的孔板,在等温条件下,对轨道车辆孔板送风规律进行研究,考察其阻力特性、孔板上方静压分布及孔板送风均匀性。  相似文献   

12.
空调客车的空气品质与热舒适   总被引:3,自引:0,他引:3  
根据空调列车卧铺车厢存在多种空气污染物和车厢内温度分布不均匀的现状,分析空调、通风系统的布置对车厢内空气品质和热舒适状况的影响,提出相应的改进措施.从节能和满足乘客个体需求的角度出发,提出在车厢内采用个体送风方式来改善卧铺车厢的空气品质和热舒适,并且对空调客车室内三维空气流场进行数值模拟研究,为空调客车室内舒适环境的优化研究提供依据.  相似文献   

13.
城市轨道交通对城市建设与发展起着重要作用.低地板车作为国内新型交通工具,在极大缓解交通压力的同时,还具备乘车环境舒适等优势,发展前景广阔.良好的气流组织是改善客室热舒适性的关键因素[1-2].送风风道出风均匀性直接决定了车内气流组织的优劣,但由于车辆纵向空间较长,不进行优化难以实现均匀送风.传统送风方式是通过车顶两侧散流器送风,但气流送入客室内仍具有较大风速,导致乘客有吹风感,影响乘坐舒适性.  相似文献   

14.
高速列车司机室是整个列车运行的控制中枢,舒适的热环境可有效保证司机良好的工作状态,从而提高列车运行的安全性。本文利用Airpak三维软件对某型高速列车司机室内夏季和冬季极端工况下的热环境进行仿真计算,对司机室内的热舒适性进行评价。计算结果表明:夏季极端工况(室外温度35℃)下,司机头部温度偏高,头部PMV值偏大,人体感觉偏热;冬季极端工况(室外温度-20℃)下,热环境参数指标满足热舒适性要求。在不改变原有送风系统结构设计的前提下,对司机室空调送风口的风量分配以及送风角度进行了优化。仿真结果表明:优化后的司机室热环境得到明显改善。  相似文献   

15.
对地铁空调车厢的热舒适性提出以预测平均投票(PMV)指标为被控参数的模糊控制方式。根据地铁现场测试数据和调查结果,建立了PMV控制方程。对模糊控制器进行了设计并在Matlab软件中实现了仿真计算。通过与PID(比例-积分-微分)控制方式比较发现,基于PMV指标的模糊控制方式在调节时间上缩短了57%,且在满足乘客热舒适要求的基础上,能很好地实现系统节能需要。  相似文献   

16.
地铁列车在隧道内运行时,由于客室内的新风风量有限、风速和温度分布不均匀、人员密度过高等原因,客室内部空气品质和人员舒适性会明显下降,乘客容易出现不适。为了掌握地铁客室环境的状态和评估其空气品质及热舒适性,以北京地铁为典型对象,采用问卷调查、连续在线实测的方法,在夏季分3个时间段,针对4条典型线路进行了乘客对客室环境主观感受的问卷调查,并在线实测了客室内空气热环境参数,分析影响客室环境舒适性的主要因素。  相似文献   

17.
依据某地铁车辆车厢中部垂直截面的实际尺寸和布局建立物理模型,对3种送风格栅的车内气流分布从速度场、温度场和压力场方面进行仿真对比分析,确定送风格栅最优类型,以使车内送风均匀性更好,乘客舒适性得到提高。  相似文献   

18.
列车车厢内气流分布的数值计算与测定   总被引:1,自引:0,他引:1  
针对车厢内温度分布不均匀问题,就列车空调设计工况进行数值计算,从理论上得到设计工况下车内气流分布情况。以一节硬卧车厢为研究对象,运用不可压缩流理论建立了车内气流的连续微分方程、动量微分方程和能量微分方程。采用k ε封闭模型,并用半隐式压力 速度耦合即SIMPLE算法计算出车内的速度场和温度场。实验测定空态下车内的气流分布,与数值计算值基本吻合,用数值解代替分散的、有限的实验测点值来进一步分析车内的热舒适性。通过计算分析得出:车厢内的平均风速为0 42m·s-1,处于铁规限定的上限,即车内速度偏高;铺位区和走廊区的平均温度分别为24 4℃和26 8℃。宽度方向上的温度不均匀性为0 75℃·m-1;采用人体热舒适性指标PMV得出特征断面上各铺位上达到热舒适标准的测试点仅为42%。  相似文献   

19.
受车辆限界及车顶设备安装空间的限制,地铁列车车顶送风风道常出现截面突变现象,使风道送风均匀性下降,影响客室气流组织和温度均匀性,导致车内环境舒适性劣化.针对某型地铁列车送风风道高度及宽度突变问题,采用模型试验和数值仿真相结合的方法,分析风道沿程阻力与客室各送风口风量之间的关系,并在不改变风道几何外形的前提下,开展风道高顶部分内部导流结构优化,降低气流在风道内运动过程中的阻力损失,提升送风均匀性,同时解决风道截面突变区域局部回流问题,优化后风道最大阻力降低16 Pa,整体送风均匀性提升44.25%.  相似文献   

20.
地铁车厢的空调系统气流性能的好坏直接影响车内乘客的热舒适性。以某型地铁车厢为研究对象,建立地铁车厢满载情况下的三维模型,运用计算流体动力学(CFD)软件Fluent,对车厢内空气流场进行数值模拟。讨论了不同送风工况(送风量和送风角度)对车厢内温度、速度的影响,并根据模拟结果对各工况的车厢气流性能进行评价分析。结果表明:在6种工况中,送风量12 000 m3/h、送风角度60°的送风工况是最优工况,其总体气流性能最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号