首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
运用能量法建立车辆—轨道耦合动力学模型,结合大秦线轨道结构力学参数,分别计算分析了45,50,60和75 kg/m共4种钢轨支承下轮轨系统各结构的动力响应,研究钢轨重型化对轮轨系统动力特性的影响。研究发现:钢轨重型化对车辆系统的动力响应影响较小,而对轨道结构和路基的影响显著;随着钢轨质量及抗弯刚度的增大,车体位移、车轮加速度、轮轨力、钢轨位移、扣件力、轨枕振动位移及枕下支承力降低,车体加速度、钢轨加速度先增大后减小,轨枕加速度增加。  相似文献   

2.
为研究扣件胶垫温变特性对车辆、轨道和桥梁的振动影响规律,以高速铁路WJ-7型扣件胶垫为研究对象,通过其动态力学性能试验得到不同温度下扣件的动参数,然后代入建立的车辆-轨道-桥梁耦合振动时域模型中进行分析.研究结果表明:扣件的动刚度和阻尼随温度降低而增大,低温时更为显著.从时域响应来看,当温度降低时,车体加速度和桥梁位移基本无影响,轮轨力、扣件力、轨道板加速度和桥梁加速度增大,钢轨的位移和加速度则减小.从频域响应来看,当温度降低时,轮轨力和扣件力在低频基本无变化,轮轨力主频向高频偏移且峰值增大,扣件力中高频峰值明显增大.钢轨在8~100 Hz范围内振动减弱,在125~315 Hz振动加剧,轨道板在80~400 Hz振动加剧,桥梁在80~250 Hz振动加剧.  相似文献   

3.
为研究扣件胶垫温变特性对车辆、轨道和桥梁的振动影响规律,以高速铁路WJ-7型扣件胶垫为研究对象,通过其动态力学性能试验得到不同温度下扣件的动参数,然后代入建立的车辆-轨道-桥梁耦合振动时域模型中进行分析.研究结果表明:扣件的动刚度和阻尼随温度降低而增大,低温时更为显著.从时域响应来看,当温度降低时,车体加速度和桥梁位移基本无影响,轮轨力、扣件力、轨道板加速度和桥梁加速度增大,钢轨的位移和加速度则减小.从频域响应来看,当温度降低时,轮轨力和扣件力在低频基本无变化,轮轨力主频向高频偏移且峰值增大,扣件力中高频峰值明显增大.钢轨在8~100 Hz范围内振动减弱,在125~315 Hz振动加剧,轨道板在80~400 Hz振动加剧,桥梁在80~250 Hz振动加剧.  相似文献   

4.
研究目的:根据板式轨道的受力特点,建立高速列车作用下板式轨道动力反应模型.利用Fourier变换,在频率-波数域内求解振动微分方程,再通过Fourier逆变换,得到列车在匀速和变速情况下轨道、轨道板及底座动位移在时域-空间域内的计算公式.结合算例,分析列车在不同速度、正加速度和负加速度下,轨道、轨道板及底座动位移的变化特性.研究结论:通过对板式轨道动力反映的分析表明:轨道结构存在一个临界速度,列车在匀速运行情况下,沿轨道方向的钢轨、轨道板及底座的动位移随列车轮对作用位置达到最大值;在变速运行情况下,钢轨、轨道板及底座动位移在不同速度与加速度处出现峰值;在减速运行情况下,轨道结构动位移仍在不同速度与负加速度处出现峰值;且在正加速度增加与负加速度减小的情况下,各结构动位移随之减小,反之亦然.  相似文献   

5.
高速铁路曲线线路车线耦合系统动力学性能仿真分析   总被引:1,自引:0,他引:1  
依据系统工程理论,建立高速铁路曲线线路车线耦合系统有限元模型,对曲线线路在高速行车条件下的耦合系统动力学性能进行仿真,研究时速300 km等级高速动车组作用下曲线线路安全与平稳性指标,曲线线路轨道结构各部分的振动响应、列车速度与曲线半径和超高的关系.结果表明动车组以350 km·h-1的速度通过半径为5 500,7 000和9 000 m的曲线线路时,动车组的垂向和横向振动加速度以及平稳性能均满足舒适度要求,而且脱轨系数和轮轴横向力也能满足列车运行安全性要求;钢轨支点的横向力表现为过超高时内轨侧大、外轨侧小,欠超高时外轨侧大、内轨侧小;钢轨、轨枕的垂向和横向加速度随速度增加明显增大,而道床和路基的垂向加速度变化不大;钢轨和轨枕的横向动位移和动态轨距扩大量随速度的增加而增大;相同速度下,曲线半径小的轨道振动相对较大.  相似文献   

6.
基于刚柔耦合动力学理论建立柔性轮对车辆-轨道刚柔耦合动力学模型,结合现场实测轴箱加速度验证了模型的可靠性。采用谐波叠加法模拟车轮多边形,对比了有无车轮多边形对轮对振动加速度的影响。在此基础上,分析了车轮多边形参数(如多边形阶次、幅值变化)对轮轨系统振动的影响。结果表明,车轮多边形将导致柔性轮对垂向加速度显著增大;与刚性轮对模型相比,柔性轮对及转向架的垂向加速度显著增大,此时多边形激振频率(674 Hz)成为影响其垂向振动的主要因素;轮对垂向加速度随多边形阶次的增加先增大再减小,当车轮多边形阶次为20阶时,轮对垂向加速度达到最大值;钢轨垂向加速度随多边形阶次的增加而增大;轮对垂向加速度、钢轨垂向加速度随多边形幅值的增大而增大。  相似文献   

7.
为了更好地进行聚氨酯减振浮置板轨道结构的选型设计,建立车辆-轨道系统动力分析模型,研究轨道板厚度、扣件刚度、减振垫刚度对聚氨酯减振浮置板轨道结构动力响应的影响。结果表明:轨道板厚度增大会导致钢轨加速度相应增大,而钢轨位移、轨道板加速度、基底加速度显著减小;扣件刚度减小会导致钢轨垂向位移增大,而钢轨、轨道板、基底加速度不同程度减小;减振垫刚度增大会导致钢轨垂向位移、垂向加速度减小,而轨道板、基底垂向加速度平稳增大。结合工程实际,建议轨道板厚度取260~300 mm,扣件刚度取20~40 kN/mm,减振垫刚度取0.02~0.03 MPa/mm。  相似文献   

8.
把温度力作用下的无缝线路简化为纵向力作用的弹性等间距支承的无限长均匀梁结构,通过连续梁理论,建立了纵向力作用下无缝线路钢轨的振动模型.分析了轨道结构钢轨自振频率与其纵向力间的内在关系,分别讨论了钢轨在承受纵向拉力和纵向压力时自振频率的变化特征,比较了钢轨类型改变、钢轨支承间距变化后对上述变化的影响.结果表明:纵向拉力作用下钢轨的竖向自振频率会随着拉力的增加而增大,钢轨支承间距加大会降低其自振频率;纵向压力作用下,钢轨的竖向自振频率随着压力的增加而减小;第一振型变化趋势基本分为两个阶段,当轴向压力较小时,呈线性变化,随着轴向压力的不断增加,逐渐地产生了非线性的变化;二阶及以上振型变化与受拉状态相似.  相似文献   

9.
研究目的:地铁常用减振型轨道结构由于采用不同的轨道横向限位方式,改变了钢轨的横向振动特性。为研究不同减振措施对钢轨横向振动特性的影响,本文对国内某城市地铁2号线常用减振型轨道结构进行钢轨横向加速度导纳和横向振动沿纵向的衰减率的测试分析。研究结论:(1)在频率100 Hz以下,减振垫浮置板道床的非刚性横向支承使得钢轨横向加速度导纳幅值大于普通DZⅢ-1型扣件整体道床,而钢弹簧浮置板轨道钢轨横向加速度导纳幅值在50 Hz以下大于DZⅢ-1型扣件整体道床;(2) GJ-Ⅲ型减振扣件的采用使得钢轨有着相对较低的横向弯曲共振频率,钢弹簧浮置板道床和减振垫浮置板道床的水平限位方式减弱了浮置板与基底的横向耦合,改变了200 Hz以下钢轨横向振动沿纵向的衰减率;(3) GJ-Ⅲ型减振扣件使得钢轨横向衰减率在中心频率2 500 Hz以下均小于DZⅢ-1轨道,并维持在较小的范围内,不利于减小钢轨横向振动产生的声辐射;(4)本研究成果对目前常用减振型轨道结构中钢轨横向振动特性的研究具有参考价值。  相似文献   

10.
减振型轨道结构是控制文物振动的有效措施之一,然而,高速铁路中减振型轨道结构尚无成熟应用经验。结合兰新高铁穿越长城段项目建设功能需求,在明确长城体水平振动速度、钢轨垂向振动加速度及钢轨垂向位移等评价指标及限值基础上,采用仿真分析法开展了减振型无砟轨道减振垫刚度变化对各评价指标影响分析,分析表明:(1)长城体水平振动速度随着减振垫刚度增加而增大;(2)钢轨垂向加速度随着减振垫刚度增加而变化不大;(3)钢轨位移随着减振垫刚度增加而减小;(4)列车运营、轨道结构服役性能及长城体保护需求的减振垫刚度应介于40~166.7 MPa/m。兰新高铁工程实施采用46 MPa/m刚度减振垫,实车测试及工程应用表明:研究成果工程应用同时满足了高铁安全、平顺、舒适性和长城体高减振性能需求。  相似文献   

11.
移动荷载作用下轨道路基动力响应分析   总被引:9,自引:0,他引:9  
基于层状梁和粘弹性半空间体理论建立轨道路基耦合动力分析模型;通过移动坐标和Fourier变换得到移动谐振点荷载作用下轨道路基稳态响应在波数域内的解;再利用快速Fourier逆变换,求出钢轨、轨枕位移及道碴路基的相互作用力在空间域内解。通过算例分析荷载速度对路基表面位移的影响,结果表明:随荷载速度增大,路基表面位移峰值也增大,在荷载速度较低范围内,其对路基位移峰值影响不大,当荷载速度接近Rayleigh波速时,路基位移峰值急剧增大;随着荷载速度的增大,路基竖向位移分布呈现出的“波动性”也越来越明显,其“波长”随荷载速度的增大而减小。  相似文献   

12.
铁路曲线连续梁桥车桥耦合振动分析   总被引:2,自引:1,他引:1  
将曲线通过车辆和曲线连续梁桥分为两个由非线性轮轨接触力联系的振动子系统。运用车桥耦合振动理论,建立铁路车辆曲线通过模型动力方程、曲线梁桥模型及其动力方程。基于激励非线性振动的数值算法,编制曲线梁桥车桥耦合振动分析软件VCBID,进行一座铁路曲线连续梁桥车桥耦合振动响应分析。结果表明:行驶速度对曲线连续梁桥竖向振幅的影响较大,但曲线连续梁桥的竖向振幅并不总是随行驶速度的增加而增加;曲线连续梁桥的横向位移随行驶速度的增大而增大,大致呈线性关系;车辆的横向加速度、竖向加速度、脱轨系数和轮重减轻率均随车辆行驶速度的增加而增加,且均满足我国现行规范的要求。  相似文献   

13.
以DZⅢ型扣件为研究对象,建立车辆-轨道垂向耦合Timoshenko梁模型,计算钢轨垂向振动加速度,并与一地铁线实测结果进行对比,分析扣件胶垫老化后刚度的变化对轨道振动的影响。结果表明:计算结果和实测结果基本吻合;随着胶垫老化,胶垫刚度从30 kN/mm增加到60 kN/mm时,钢轨垂向振动加速度没有明显的变化;胶垫刚度从30 kN/mm增加到90 kN/mm时,钢轨垂向振动加速度最大值增加了112%,即胶垫刚度增大2倍以上时,钢轨振动加速度所受影响较大;当钢轨振动中心频率125 Hz时,胶垫刚度变化对钢轨振动的影响较小;当钢轨振动中心频率在125~1 500 Hz时,胶垫刚度变化对钢轨振动的影响明显,加速度振级变化最大值可达14.22 dB;随着胶垫刚度的增大,轮轨力的变化比较明显,轮轨脱离的时刻明显增多。  相似文献   

14.
列车速度对车辆—轨道—路基系统动力特性的影响   总被引:1,自引:0,他引:1  
根据列车运行的实际情况,将轨道一路基作为参振子结构纳入车辆计算模型,建立车辆、钢轨、轨枕、道床、路基和地基为一体的二系垂向耦合动力分析模型,分析列车速度变化对车辆运行品质、动位移以及路基动应力的影响.结果表明:车体加速度、动轮载和轮重减载率均随车速的提高而增大,呈线性分布;具有二系悬挂的高速列车通过有砟轨道路基结构时,列车的安全性及舒适度均能满足要求;系统动位移受速度影响较小;路基面动应力随速度的提高而增大,并在横向呈马鞍形分布,在纵向呈抛物线形分布;路基动应力沿路基深度方向衰减较快,在基床表面下3m处,动应力只有基面的16%左右.研究结果与已有部分研究结论吻合较好,表明模型具有较高的可靠性.  相似文献   

15.
为了掌握钢轨扣件减振橡胶中阻尼的分布及其随振幅和频率的变化规律,对减振橡胶元件受压和受剪两种扣件进行了试验研究。建立钢轨扣件减振橡胶非线性弹性力和混合阻尼叠加的动力学模型,完成模型参数识别及结果检验。根据所建立的动力学模型计算各试验工况下的弹性变形能、阻尼耗能和结构损耗因子。分析发现:压缩和剪切两种扣件减振橡胶的阻尼参数随振幅和频率的变化规律相似,弹性变形能、阻尼耗能和结构损耗因子均随振幅的增大而显著增大,而受频率的影响较小。相同工况下,压缩型扣件减振橡胶的结构损耗因子远大于剪切型扣件,说明压缩型扣件在发挥减振功能时,其耗能特性优于剪切型扣件,而隔振特性劣于剪切型扣件。因此,在钢轨扣件创新设计时,可以通过控制减振橡胶压-剪组合变形,来实现扣件隔振和衰减振动能量两功能的均衡发挥,将结构损耗因子作为设计过程中的控制指标。  相似文献   

16.
针对某一典型高速铁路路涵过渡段进行室内试验及数值模拟,建立车辆-轨道-过渡段动力大耦合模型,提出了新型过渡段的组成以及变态浆液、改良级配碎石的关键配比参数。结果表明:随着深度的增加路基动应力、加速度逐渐减小,并呈现指数分布;随着深度的增加,竖向位移变化曲线较为平缓;随着列车运行速度的增加,路基应力、位移、加速度总体上逐渐增大,存在速度150,350 km/h~2个临界速度,说明列车运行速度与过渡段的动力响应并非呈正比例关系;随着列车轴重的增加路基加速度、动应力变化不大,竖向位移变化较为明显,位移随列车轴重的增大而增大,这说明重载铁路对过渡段的要求很高。  相似文献   

17.
板式减振垫轨道能降低列车运营对周围环境的影响,确保城市轨道交通引起的振动满足环保要求,在高等减振设计中普遍采用。基于轮轨耦合作用,建立城轨列车-板式减振垫轨道-下部基础有限元模型,对不同减振垫刚度下板式轨道结构进行模态、谐振分析,并对其减振性能进行研究。研究表明:(1)减振垫轨道结构的固有频率随着减振垫刚度的增大而增大,振型包括轨道板的平动、转动、弯曲和钢轨的侧翻、扭转;(2)钢轨至轨道板的传递损失集中在15~30 d B,而轨道板至基底的传递损失峰值达51 d B;(3)车体加速度、轮轨垂向力、钢轨加速度、基底垂向加速度随着减振垫刚度的增大呈增大趋势,而钢轨位移、轨道板加速度和位移呈减小趋势;(4)板式减振垫轨道在25~100 Hz频段的减振效果较好,特别是1/3倍频程中心频率63 Hz处,插入损失达24 d B;在1~25 Hz频段的减振效果一般,而且局部频段出现振动放大的情况。  相似文献   

18.
研究目的:目前,轨道刚度变化对车辆-轨道耦合系统频率响应的影响规律尚不明确,本文基于车辆-轨道耦合动力学理论,以既有提速线路为例,从频率角度,研究轨道刚度变化对车辆-轨道耦合系统振动响应的影响。研究结论:(1)轨道刚度的变化,对车体、转向架的振动影响较小,对轮对及轨道结构的振动影响较大;轨道刚度的增大,对27 Hz以下的低频振动基本无影响,27~70 Hz之间的中低频振动略有降低,100 Hz以上的中高频振动显著增大;(2)随扣件刚度的增大,轮轨力谱以及轮对、钢轨振动加速度谱的最大值均显著增大,且振动频率有向高频发展的趋势;(3)随道床刚度的增大,频率响应谱的最大值变化相对较小,轮轨力、轮对、钢轨和轨枕的振动频率向高频移动;(4)总体上看,扣件刚度对耦合系统振动响应的影响较大,在线路维修时应及时更换恶化的扣件系统,道床刚度变化的影响相对较小,其维修周期可适当延长;(5)该研究可指导轨道结构的优化设计以及轨道的养护维修。  相似文献   

19.
由于隧道的遮挡作用,桥隧过渡段无砟轨道无缝线路表现出特殊的纵向力学特性。通过对笔架山隧道内外气温为期2年的监测,得到隧道内外气温分布规律,并建立桥隧过渡段无砟轨道无缝线路纵向相互作用模型,分析桥隧过渡段无砟轨道无缝线路纵向力学特性影响因素。结果表明:(1)监测时间内,笔架山隧道最高和最低气温分别为43℃和-14℃,隧道内外最大气温差为23℃,隧道气温过渡段长50 m;(2)考虑隧道内外温差时钢轨纵向位移显著增大,高温季节应加强对临近隧道洞口简支梁上钢轨爬行量监测,钢轨附加拉力有所增大,在桥隧过渡段无砟轨道无缝线路设计时应考虑隧道内外温差的影响;(3)隧道气温过渡段长度和扣件纵向阻力对钢轨纵向位移和钢轨附加压力影响显著,钢轨纵向位移随过渡段长度和扣件纵向阻力增大而显著减小,钢轨附加压力则随过渡段长度和扣件纵向阻力增大而显著增大。  相似文献   

20.
研究目的:CRTSⅢ型板式无砟轨道层间离缝不仅影响轨道的动力响应,而且危及行车安全。本文以车辆及层间离缝CRTSⅢ型板式无砟轨道系统为研究对象,基于车辆-轨道耦合动力学理论,建立此系统动力学模型,探讨层间离缝宽度及长度对车体加速度、轮轨力、钢轨位移及加速度、轨道板位移及加速度、底座板位移及加速度等动力响应的影响规律。研究结论:(1)当层间离缝纵向长度为1. 2 m,层间离缝宽度超过1. 5 m时,上述动力响应随层间离缝宽度的增大而增大,车体加速度、轮轨力、钢轨位移及加速度增幅不大,但轨道板位移及加速度、底座板位移及加速度增幅显著,特别是轨道板位移及加速度,较正常状态最大增幅分别为121%和81. 9%;(2)层间离缝横向贯穿后,在离缝长度小于1. 2 m时,对车轨系统动力响应影响较小;在离缝长度为1. 2 m至2. 4 m时,系统各部件动力响应明显增大,当离缝扩展至轨道结构中心位置以后,系统各部件动力学响应增大更为明显,尤其是轨道板位移和加速度,较正常状态最大增幅达到18. 87倍和10. 38倍,在离缝长度等于3. 0 m时,钢轨竖向位移达到2. 45 mm,已超过规范要求限值,所以离缝长度应控制在3 m以内;(3)在层间离缝长度为4. 8 m时,车体竖向加速度达到1. 56 m/s2,已超过规范要求限值,危及列车行车安全;(4)本研究结果可为CRTSⅢ型板式无砟轨道层间离缝养护维修工作及行车安全提供指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号