首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以佛山市城市轨道交通三号线大墩站-东平站区间下穿广佛城际铁路东平新城站为背景,研究区间隧道上方车站中板已完成施工、围护结构支撑已拆除、车站尚未封顶板时的盾构隧道下穿方案,采用Midas GTS NX建立盾构下穿广佛城际铁路东平新城站的三维计算模型。计算结果表明,随着支撑拆除和右线盾构隧道下穿,地下连续墙最大水平位移,竖向位移,总位移值分别为27. 83 mm、1. 367 mm、27. 94 mm,均小于30 mm,对连续墙变形影响很小,隧道下穿过程中连续墙最大弯矩值为1 405. 4 kN·m,最大剪力值为467. 9 kN,配筋满足要求。盾构下穿过程中现场监测数据表明,连续墙实际最大水平位移,竖向位移,总位移值分别为25. 74 mm、1. 421 mm、26. 83 mm,确保了佛山城市轨道交通三号线下穿盾构的顺利通过。  相似文献   

2.
为研究软土地区顶管下穿既有铁路营业线桥梁对其产生的影响,本文采用Midas-GTS有限元分析软件,对天津市万汇路220 kV电力管线顶管下穿京沪高铁、津秦客专下行联络线施工过程进行三维数值模拟,得出铁路桥墩基础附加变形情况。京沪高铁天津特大桥最大附加竖向、纵向和横向位移均出现在1498号桥墩基础,分别为-0.653 mm、-0.459 mm和-0.923 mm;津秦客专下行联络线1号桥最大附加竖向、纵向和横向位移均出现在16号桥墩基础,分别为-1.013 mm、1.041 mm和1.586 mm,计算结果满足现行规程限值要求,能够保证铁路安全运营。  相似文献   

3.
研究目的:砂卵石地层具有显著的弱胶结、高灵敏度、受扰动后自稳能力差等特点,在类似于这样的砂卵石地层进行盾构小净距多次下穿连拱砖桥的相关工程案例和研究较少。本文以成都地铁5、6号线隧道多次盾构下穿连拱桥为工程背景,运用三维有限元法分析砂卵石地层盾构隧道近接施工对连拱桥结构位移和内力的影响,并与地层注浆加固工况进行计算结果对比分析,从而为砂卵石地层盾构隧道修建技术提供理论指导。研究结论:(1)未经加固连拱桥在盾构多次近距离下穿下产生了较大的竖向、横向位移,最大位移值分别为3.92 mm和0.52 mm;桥墩的不均匀沉降及盾构隧道施工会引起拱桥结构的轴力、剪力和弯矩发生变化,拱桥内力最大值均出现在拱脚处;(2)对连拱桥基底及隧道周围地层进行注浆加固后,能够显著减小连拱桥的整体位移,桥体最大竖向、横向位移分别为2.96 mm和0.39 mm,比无加固工况减小了24.5%和25.0%,同时隧道多次下穿连拱桥对拱圈内力的影响也得到了控制,桥体拱圈轴力和剪力变化较小,弯矩值显著减小,降低了13.1%;(3)该注浆加固方法能够确保盾构隧道修建时连拱桥结构的运营安全,研究成果可为砂卵石地层盾构隧道修建技术提供理论指导。  相似文献   

4.
文章以杭州地铁 9 号线一期工程下穿沪杭铁路框架桥为背景,建立盾构下穿施工三维数值模型,分析软弱地层环境下地铁盾构隧道下穿施工对铁路框架桥的影响,提出多种确保铁路安全运营应对措施。施工过程中通过现场监测得出的数值分析表明,盾构隧道下穿施工中铁路框架桥最大沉降量为 6.72 mm;进行洞内注浆加固后,最大沉降量降为 4.76 mm;这说明在软弱地层环境下及时进行洞内注浆对抑制铁路框架桥的沉降变形具有显著效果。监测结果还表明,盾构右线施工对框架桥沉降变形的影响大于左线,且铁路框架桥最大沉降达到 6.9 mm;采取应对措施及时进行洞内二次注浆,可有效控制框架桥的持续沉降变形,使铁路框架桥处于安全可控状态。  相似文献   

5.
以北京地铁16号线国家图书馆站至二里沟站区间隧道近距离下穿既有地铁4号线国家图书馆站至动物园站区间隧道为背景,采用FLAC 3D模拟分析了下穿施工引起的既有隧道结构变形特征,提出了下穿施工期间的变形控制指标和变形控制的重点。结果表明:既有隧道结构沉降曲线近似呈W形,右线隧道施工产生的沉降比左线稍大;既有隧道结构变形控制指标为3 mm,为防止注浆引起既有隧道结构过大抬升和降低工程造价,设定最大隆起变形为1 mm;下穿段新建隧道上方是变形控制的重点。根据计算结果和设定的变形控制指标调整了施工支护参数。下穿施工期间既有隧道各项监测数据均正常。  相似文献   

6.
为研究双线隧道盾构掘进诱发地面U形槽和邻近桥梁桩基沉降的影响及控制措施,结合成都地铁4号线下穿复杂建筑群,对盾构掘进引起土体竖向变形的公式进行推导,采用Mohr-Coulomb建立隧道-地层-桥墩基础三维实体模型,模拟开挖过程中不同工况对地表U形槽沉降及邻近桩基水平位移和竖向位移的影响,并与理论公式推导结果进行对比。研究结果表明:盾构开挖引起的沉降主要由盾构正面推力、盾构机与周围土体之间摩擦力导致的土体竖向变形等构成,模拟计算得到的U形槽最大竖向位移为14 mm,公式计算得到的最大沉降为25 mm。桥桩基模拟计算和公式计算得到的最大沉降值分别为13 mm和21 mm。公式计算考虑的因素较模拟计算多,沉降值较模拟计算大,但趋势较为接近。  相似文献   

7.
陈明 《铁道勘察》2023,(1):126-131
为研究浅埋暗挖隧道近距离下穿对邻近高铁特大桥的影响,以北京某地铁暗挖区间线路,与桥桩夹角为40°,净距仅2.1 m为工程背景,建立三维数值模型,模拟地铁左、右线暗挖区间侧穿高铁桥桩的施工过程,揭示既有高铁桥墩的变形特性。研究表明,未施加防护措施下,暗挖施工使高铁特大桥墩顶产生的最大竖向位移为5.03 mm,最大横向位移为3.23 mm,最大纵向位移为3.96 mm,不满足控制标准;在采取隔离桩及注浆加固措施的工况下,桥墩顶最大竖向位移为2.91 mm、最大横向位移为1.71 mm;最大纵向位移为1.13 mm,满足控制标准。结果表明,暗挖隧道小角度近距离下穿高铁特大桥方案可行,施作隔离桩及地表注浆加固措施可有效降低隧道施工对桥梁的影响。  相似文献   

8.
为研究盾构隧道下穿高铁路基的沉降控制措施及其效果,以西安地铁 1 号线三期工程盾构下穿徐兰高铁 段工程为背景,通过对现行规范及既有类似工程案例的分析、结合既有无砟轨道的现状,确定了本工程隧道下穿 高铁无砟轨道路基的控制标准,并以此选定了盾构隧道下穿高铁路基的盾构、加固以及辅助控制变形措施,依据 施工方案并结合工程实际情况,理论分析了影响分区的判别准则及判别阈值,进而划分了铁路路基受到不同影响 的分区,通过数值模拟的方法分析拟定施工方案的实施效果。结果表明:采用盾构下穿高铁路基避开 CFG 桩 (水泥粉煤灰碎石桩)且进行地面袖阀管注浆加固的方案能够满足工程要求,道床的最大竖向位移为 4.716 mm, 最大水平位移仅为 0.301 mm;CFG 桩的最大竖向位移为 11.93 mm。  相似文献   

9.
为了解决小净距重叠隧道下穿准高速铁路的安全施工问题,采用数值计算的方法,对上下重叠隧道不同施工顺序引起的地层变形、管片结构位移和受力情况进行分析。结果表明,采用"先下后上"开挖方式时,地表沉降、隧道管片结构竖向位移及其弯矩均小于"先上后下"开挖方式。当采用"先下后上"盾构掘进时,上隧道引起的最大地表沉降为13. 934 mm;采用"先上后下"时,最大地表沉降为15. 516 mm(沉降控制值为10 mm)。对铁路线路、上下隧道间夹层土体和铁路路基软土进行加固后,地表沉降数值计算值为9. 525 mm,实际观测最大值为5. 9 mm(均在控制值范围内)。该研究结论为重叠隧道顺利下穿准高速铁路施工提供了关键技术支持。  相似文献   

10.
隧道盾构施工对邻近管线群位移影响的模型试验研究   总被引:1,自引:0,他引:1  
隧道盾构施工会对邻近管线造成不利影响,但目前对管线位移的研究多集中在单一管线方面,考虑管线之间影响的研究较少。针对这一问题,开展砂土地层盾构施工对邻近管线群影响的室内模型试验,研究隧道盾构垂直下穿多条既有管线时对管线竖向沉降的影响。研究结果表明:当单一管线垂直于隧道开挖方向时,管线最大沉降发生在隧道正上方位置,沉降曲线形态关于隧道轴线呈对称分布,且符合Gauss曲线特征;当隧道垂直下穿双管线时,管线产生的竖向沉降曲线形态与单一管线基本一致,但管线最大沉降值较单一管线明显减小。通过对试验结果的归一化分析,提出管线间距对最大沉降影响的计算公式。  相似文献   

11.
针对卵石流塑地层盾构隧道下穿施工诱发地表及其地表建(构)物变形过大等问题,以长沙轨道交通3号线盾构隧道下穿京广铁路框架桥为背景,提出"袖阀管注浆加固"与"深层二次注浆"技术,并通过数值计算分析了盾构掘进过程对京广铁路框架桥的影响,探讨地层加固前后盾构下穿地表变形情况以及铁路框架桥的稳定性。研究结果表明:未采取地层加固措施盾构下穿京广铁路框架桥围岩及地表变形较大,地表沉降量高达35.13 mm,组成框架桥的9个箱涵之间不均匀变形较大,最大沉降量发生在先行施工隧道上部,轨道变形最大值为6.18 mm,远大于规范要求,采取地层加固措施后,地表沉降得到有效控制,框架桥不均匀沉降相对于未加固工况,差异沉降减小约48.1%,保证了铁路运营安全。  相似文献   

12.
盾构下穿铁路箱涵施工变形控制技术研究   总被引:1,自引:0,他引:1  
结合南昌地铁1号线区间隧道在丁公路北站—师大南路站区间下穿京九铁路箱涵桥工程,采用有限差分程序对盾构施工过程中土层及结构的变形进行了仿真计算,分析了隧道施工对铁路桥、公路路面与轨道结构的影响。计算结果表明,框构桥的整体沉降最大沉降量超过标准限值,必须对框构桥底板下部土层进行加固,建议检测框构桥底板脱空程度,及时进行注浆加固处理,以保证地铁隧道安全顺利穿过运营铁路桥。  相似文献   

13.
以南京地铁11号线下穿南京长江大桥北引桥为工程背景,利用数值模拟软件研究地铁施工过程中临近桥桩的变形和受力变化规律。研究结果表明,当桥桩底标高和隧道底标高平齐时,地铁施工会使得桥桩产生竖向刚体位移1.15m m,在与隧道轴线平齐处桥桩侧向位移最大达到2.06mm;桥桩中部竖向正应力最大达到0.64MPa,相比开挖前增长了276%;隧道开挖扰动影响桥桩变形和受力的范围为桥桩距隧道掌子面水平距离前后20m。为确保桥桩的稳定,需采取相应的加固措施减小隧道开挖扰动的影响。  相似文献   

14.
城市地铁盾构法施工对周围土体产生扰动引起地表位移是施工中必须重视的问题。当盾构隧道下穿既有隧道或管线等构筑物时,地层位移不可忽略。以北京地铁14号线方-十区间为背景,采用地层分层位移监测技术体系,通过多元回归分析和坐标转换等方法监测得到某一位置不同深度测点地层位移,研究不同深度地层的竖向位移分布特征以及随盾构推进的动态变化规律,并结合数值模拟进行对比分析。结果表明:地表和不同深度地层都呈现明显正态分布的沉降槽特征,沉降槽最大沉降值从拱顶传至地表过程中逐渐衰减且变形影响范围不断向两侧扩展,埋深较小的沉降槽宽而浅,埋深较大的沉降槽窄而深。实测结果及数值模拟均揭示了盾体通过阶段和盾尾脱出后阶段占有最终沉降较大比例,这为有效充填开挖间隙以及加强盾尾空隙注浆效果以有效控制地层位移提供理论支撑及指导意义。  相似文献   

15.
地铁盾构近接施工产生的地层扰动与变形会对既有敏感构筑物使用安全造成威胁。为分析盾构下穿施工对既有铁路建构筑物变形的影响,以长沙地铁6号线盾构长距离下穿京广铁路客货运框架桥为工程背景,建立盾构下穿施工的三维数值模型。研究不同注浆压力、土仓压力及地层加固情况下框架桥和轨道的变形受力特性,并结合现场实测数据分析盾构掘进参数的变化特征及既有结构的变形规律。模拟结果表明:盾构左线先行施工对框架桥和轨道变形的影响大于右线;注浆压力和土仓压力的提高,以及地层加固措施的采取,能有效控制框架桥和轨道的沉降变形;轨道结构变形随注浆压力和土仓压力的提高而减小,分别达到0.30 MPa和0.16 MPa后继续提升时对沉降控制效果逐渐减弱。实测数据表明:右线盾构掘进参数相比左线较小且更稳定,总推力和刀盘扭矩控制在13 000 kN和3 500 kN·m以下可确保安全快速掘进;框架桥和轨道变形随盾构掘进变化明显,下穿前变形较小,下穿时变形开始增大,下穿后变形逐渐稳定;框架桥整体变形在-1.75~1.37 mm之间,轨道变形在-3~2 mm之间,轨道高低偏差和变形速率均小于控制标准。在施工过程中应重点关注先行隧道的...  相似文献   

16.
针对某大跨度隧道DK0+380—DK0+480区段从既有车站旅客通道正下方长距离平行下穿导致施工风险加大的情况,对风险源及其可能造成的危害进行分析,并通过FLAC 3D仿真计算软件建立三维模型,对隧道下穿旅客通道的安全性进行风险分析。结合相应风险控制标准,得到以下结论:(1)软弱围岩地层条件下,大跨度隧道长距离平行下穿车站旅客通道时风险较高,故在加强监控的同时必须采取有效加固、支护措施来保证隧道安全;(2)隧道在近接车站旅客通道的情况下施工,通道顶部最大变形量为7.84 mm,底部最大变形量达到7.76 mm,故必要时应对通道周边土层采取进一步加固措施以保证旅客通道安全正常运营;(3)隧道开挖后,通道顶部竖向应力整体呈现增大趋势,最大增幅达76.8%,而底部则出现一定应力松弛现象。  相似文献   

17.
杭州至海宁城际铁路余杭高铁站~许村镇站区间盾构隧道下穿杭州运营地铁1号线区间隧道,竖向净距仅3.2m。需要研究合理控制盾构掘进地层损失率,保障地铁运营区间隧道的沉降值在安全允许范围内。为此利用FLAC3D三维有限元软件计算分析了盾构隧道施工对运营地铁区间的沉降影响。研究结果表明沉降量与地层损失率密切相关,严格控制施工过程中的地层损失率在5‰以内,可减小对已运营地铁隧道变形的影响。施工监测数据结果表明,沉降分析及控制要求是安全合理的。  相似文献   

18.
盾构机掘进过程对周围建筑物、管线及道路的影响归根到底是隧道周边土体扰动造成的。本文以石家庄地铁三号线水上公园站-柏林庄站区间350 m半径小曲率转弯下穿预注浆加固建筑物为例,通过监测盾构机转弯过程中土体的分层竖向变形及水平位移数据,研究其规律及特点,同时对比直线段及曲线段特征规律。盾构机掘进过程中对土体扰动的最大沉降量为4 mm,最大上拱量为20 mm,外侧水平位移为3.9 mm,内侧水平位移为2.7 mm。结果表明,在小曲率半径转弯段,地基预注浆加固隧道周围土体仍易产生较大上拱,影响隧道施工安全,应采取有效措施进行预防。本研究可为盾构机在小曲率半径条件下通过预加固地段施工提供指导和借鉴意义。  相似文献   

19.
济南市双线明挖隧道和双线盾构隧道先后下穿既有铁路桥梁。为保护既有铁路桥墩和桥桩,拟定采用隔离桩和不采用隔离桩两种方案,通过数值模拟研究了明挖隧道和盾构隧道施工时铁路桥梁的桥墩、桥桩位移变化规律及隔离桩的隔离效果。结果表明:明挖隧道围护桩施工+基坑开挖、主体结构施工+覆土回填、盾构隧道下穿引起的桥墩竖向位移分别占桥墩总竖向位移的60.14%、27.07%、12.79%;受围护桩与隔离桩桩长的影响,明挖隧道及盾构隧道施工对24.5 m深以下桥桩的保护作用减弱;与未采用隔离桩相比,采用隔离桩后桥墩最大累计竖向位移与桥桩最大水平位移分别减小了68.5%、60.7%,隔离桩对变形的控制效果明显。  相似文献   

20.
为探究盾构下穿施工对既有隧道结构和地层的变形影响规律,以拟建的石家庄市地铁5号线下穿6线隧道为工程背景,基于几何相似比配制地层和结构模型试验材料,并设计试验监测系统。采用直径1 200 mm小型盾构机,试验模拟盾构隧道以不同深度垂直下穿既有6线隧道的施工过程,并分析下穿过程中既有6线隧道和地层土体的沉降变形规律。结果表明:随着既有隧道底部地层距盾构隧道拱顶距离的增大,地层沉降减小,盾构施工对地层的影响范围约为1.5倍洞径,显著影响区为1倍洞径;随着埋深的增大,盾构施工引起结构下方地层的沉降减小,距盾构隧道拱顶距离分别为1倍洞径和1.5倍洞径时沉降最大差值为31.25%;6线隧道结构与其下方地层产生脱空,盾尾脱出阶段发生的地层沉降占比大于80%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号