首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
针对目前Ф840D货车车轮辐板孔裂纹故障增多及其可能带来的隐患,本文首先采用有限元方法数值模拟了不同运用条件下车轮的机械应力和制动热应力,其次根据线弹性断裂力学理论研究了辐板孔边裂纹的应力强度因子,最后结合Forman疲劳裂纹扩展方程及裂纹扩展门槛值,得到不同运用工况下辐板孔裂纹扩展的基本特性及规律,从而分析出了导致裂纹扩展的载荷条件.分析结果表明:辐板孔裂纹是典型的疲劳裂纹,是由萌生于辐板孔内侧的微细裂纹逐渐扩展而来的,它是由热负荷和机械载荷的综合效应造成的.单纯的机械载荷不会直接导致孔边裂纹的萌生和扩展;坡道制动与机械载荷的叠加才是导致辐板孔裂纹萌生与扩展的最主要的载荷工况.这对预防车轮疲劳失效、优化车轮设计,保障行车安全,具有重要意义.  相似文献   

2.
φ840D货车车轮辐板孔疲劳裂纹扩展特性研究   总被引:2,自引:0,他引:2  
针对目前840D货车车轮辐板孔裂纹故障增多及其可能带来的隐患,本文首先采用有限元方法数值模拟了不同运用条件下车轮的机械应力和制动热应力,其次根据线弹性断裂力学理论研究了辐板孔边裂纹的应力强度因子,最后结合Forman疲劳裂纹扩展方程及裂纹扩展门槛值,得到不同运用工况下辐板孔裂纹扩展的基本特性及规律,从而分析出了导致裂纹扩展的载荷条件。分析结果表明:辐板孔裂纹是典型的疲劳裂纹,是由萌生于辐板孔内侧的微细裂纹逐渐扩展而来的,它是由热负荷和机械载荷的综合效应造成的。单纯的机械载荷不会直接导致孔边裂纹的萌生和扩展;坡道制动与机械载荷的叠加才是导致辐板孔裂纹萌生与扩展的最主要的载荷工况。这对预防车轮疲劳失效、优化车轮设计,保障行车安全,具有重要意义。  相似文献   

3.
典型服役工况是引起高铁车辆核心安全部件轴箱轴承疲劳损伤的关键外部因素,探究不同典型服役工况对轴承疲劳损伤的影响度是保证高铁运行安全亟待解决的问题.为解决该问题,在服役条件下测得高铁典型服役工况的载荷数据,编制轴承载荷谱,利用有限元法得到应力谱,并计算等效当量载荷.结合疲劳损伤累积理论,计算得到4种典型工况下每公里及本次...  相似文献   

4.
文章针对地铁车辆焊接构架焊接部位的疲劳失效问题,首先建立构架有限元模型,选取5条危险焊缝,按照疲劳试验的载荷计算得到焊缝结构应力分布特点,其中焊缝最大等效结构应力点为77.5 MPa;然后根据结构应力法中98%可靠度,-2σ应力水平下的S-N曲线计算焊缝疲劳寿命,5条焊缝的累积损伤均小于1,满足疲劳设计寿命要求;最后使...  相似文献   

5.
热斑、疲劳裂纹和应力开裂是钢铁制动盘摩擦面在服役过程中存在的热损伤现象,是导致疲劳裂纹失效的重要起因。研究摩擦面热损伤的形成机理对于防止制动盘的热损伤失效具有重要意义。采用有限元计算与理论分析相结合的方法,研究了制动盘热斑、裂纹和应力开裂3种热损伤的形成机理、影响因素。重点分析了热斑形成的温度条件和材料的组织变化、裂纹的形成和扩展规律以及5种约束所形成热应力的分布规律。  相似文献   

6.
铁路客车转向架构架在服役过程中,首先在横侧梁连接区域发生疲劳裂纹。经多次局部补强,构架仍存在疲劳可靠性不足的状况。这一现象表明:真实运用载荷未能成为构架设计的输入条件,构架设计时所用抗疲劳设计规范中的载荷规定尚不能完全针对目前车辆的真实运用环境,有必要开展实际运用环境下的构架载荷研究,从而提升构架的疲劳可靠性,确保运用安全。构建高精度测力构架,建立构架载荷系与疲劳控制部位的损伤传递关系;将测力构架换装到实际运用车辆,在裂纹发生比例高的线路多次往返跟踪测试,获得构架载荷系-时间历程与构架疲劳控制部位的动应力;建立用于提升构架疲劳可靠性的载荷谱;通过系统施加补强结构和持续优化补强结构细部形式分析载荷谱作用下的构架疲劳控制区域应力,完成构架优化改进。线路验证测试结果表明,构架疲劳可靠性得到系统性提升。  相似文献   

7.
以GCY300II型轨道车12 t轴重车轴为研究对象,采用机车车轴的强度标准,利用有限元计算方法计算车轴不同轴重下的6种不同工况的静强度和疲劳强度,在获得对应工况的应力分布及数值的基础上,进行车轴的静强度和疲劳强度分析,并确定车轴薄弱部位,然后假定车轴最薄弱部位出现疲劳裂纹,将不同轴重、不同工况下计算得到的应力数值作为车轴裂纹处的载荷应力谱,再结合疲劳断裂分析理论计算分析车轴疲劳裂纹扩展寿命。计算结果表明:车轴薄弱部位为车轴变截面处,其中最薄弱部位为车轮内侧轮座处上边缘。  相似文献   

8.
为了准确评估高速列车转向架构架的疲劳可靠性,通过转向架构架相同材料焊缝结构的多级小样本疲劳试验数据,得到指定寿命下疲劳强度分布的概率密度函数;采用双参数雨流计数法,根据实测构架结构的复杂随机应力—时间历程曲线编制构架的应力谱,再按照Miner准则和疲劳损伤等效原则计算对应的恒幅对称循环等效应力,并由此拟合得到高速列车服役寿命下等效应力分布的概率密度函数;根据得到的构架疲劳强度分布函数和等效应力分布函数,以等效应力小于疲劳强度为疲劳破坏判据,建立高速列车转向架构架的等效应力—疲劳强度可靠性模型。以某型高速列车转向架构架横侧梁连接处为对象,基于焊接结构疲劳试验和长期跟踪测试试验数据,对模型进行验证。结果表明:模型可用于评估构架的疲劳可靠性,可为焊接构架结构的进一步优化及全寿命周期管理提供依据;该型高速列车转向架的构架结构在1 200万km总运行里程的服役寿命下,其可靠度达99.36%,安全系数较高。  相似文献   

9.
车轴疲劳裂,断的宏,微观特征和裂纹车轴的寿命预测   总被引:1,自引:0,他引:1  
本文在系统研究典型组合条件下的模拟试样断口和对实物断轴进行全面失效分析的基础上,提出了铁路车轴疲劳断口的特征和以上述特征为判据进行失效分析的思路。讨论了在谱载荷下近门槛区的裂纹扩展特性,以及谱载荷下影响轮座压装部裂纹扩展剩余寿命的主要因素和它们相关的系列值,最后简述了防止车轴断裂的主要措施。  相似文献   

10.
高速列车铸铝合金齿轮箱在服役过程中承受复杂的载荷条件和随机应力。以某新型高速列车齿轮箱为研究对象,结合线路试验分析列车运行速度、电机输出扭矩及线路条件对箱体动应力响应及疲劳强度的影响,利用应力—强度干涉理论建立齿轮箱等效应力—疲劳强度干涉可靠性模型,分析齿轮箱箱体疲劳可靠度与服役里程的关系。结果表明:随着列车运行速度和电机输出扭矩的增大,箱体各测点的应力水平均有不同程度的增大,其中端部吊杆座处的应力变化最为明显;当列车运行速度由200km·h-1增加到400km·h-1时,其最大动应力幅值增大约120%,电机输出扭矩由0变为1400N·m时最大动应力幅值增大约150%。此外,线路条件对箱体等效应力也影响显著。随着列车服役里程的增加,箱体疲劳可靠度不断降低,在一定可靠度下,随着铝合金箱体铸造水平等级的提高,齿轮箱箱体寿命延长,铸造孔径为0.5mm时的服役里程是铸造孔径为0.9mm时的3.8倍。  相似文献   

11.
地铁构架的疲劳失效在焊接接头的焊趾和焊根处均有可能发生,因此需要一种有效的疲劳评估方法来全面地分析转向架的疲劳可靠性。针对该问题,基于有效缺口应力法建立了某地铁转向架构架整体有限元模型,以及电机吊座翼板与横梁连接部位焊接接头的局部网格细化有限元模型,得到了焊接接头焊趾和焊根处的有效缺口应力分布。根据Miner损伤理论和对应的S-N曲线计算得到有效缺口应力法与名义应力法的累积损伤。结果表明,接头焊根处更易发生疲劳失效。此外,有效缺口应力法比名义应力法更加安全。为进一步研究不同载荷对损伤的影响,通过对比各载荷的累积损伤结果发现:对于有效缺口应力,损伤占比较大的5种载荷分别是扭转载荷、电机横向载荷、电机垂向振动载荷、电机驱动载荷、齿轮箱垂向振动载荷,其中扭转载荷占比最大,达30%~60%。文章验证了有效缺口应力法在地铁车辆构架疲劳评价中的安全性和适用性。  相似文献   

12.
为验证轨道交通车辆转向架构架服役条件下的安全性,对转向架构架各工况下的工作状态进行仿真分析,得到转向架构架的薄弱点位,并以此为依据对转向架构架布置应力传感器测量构架各点位的实际疲劳应力。依据雨流计数法对转向架构架各测点的实测数据进行处理,得到转向架构架各测点的16级载荷应力谱,利用该载荷应力谱根据线性累积损伤理论对转向架构架的疲劳寿命进行寿命评估,可为同类车辆结构的疲劳寿命评估、设计优化和使用维护提供参考。  相似文献   

13.
双层客车车轴疲劳寿命可靠性计算   总被引:4,自引:1,他引:3  
魏长竹 《铁道学报》1994,16(2):108-114
本文应用疲劳损伤累积理论,讨论了车轴中值疲劳寿命的计算方法,同时按疲劳寿命服从对数正态分布规律,建立了对数寿命与失效概率的分布函数,据此,借助于文献[1]所提供的双层客车车轴载荷(应力)谱,具体计算了双层客车车轴的疲劳寿命及其相应的可靠度,并提出了双层客车车轴额定寿命为15年的建议。  相似文献   

14.
既有重载铁路线路运营列车轴重提高会造成钢筋混凝土(RC)梁产生更加严重的疲劳问题,影响桥梁的服役性能。为研究重载铁路RC梁的疲劳可靠度,从概率的角度保障重载铁路桥梁的服役安全,根据重载铁路的运营特点,建立重载铁路RC梁的疲劳功能函数,提出基于直接概率积分法的重载铁路桥梁结构的疲劳可靠度分析方法。以某既有重载铁路跨度为8 m的RC简支板梁为例,分析该重载铁路的不同轴重货运列车的荷载模型,将列车轴重与动力系数作为随机变量,并通过移动荷载法与雨流计数法获取钢筋等效应力幅的概率模型。在此基础之上,结合重载铁路的等效运营谱,对跨度为8 m的RC板梁进行疲劳可靠度评估,并探讨年运量及列车轴重对疲劳可靠度的影响。研究结果表明:直接概率积分法能够高效精确地对重载铁路RC梁进行疲劳可靠度评估。在该重载铁路运营的前20年,疲劳失效概率均小于规范规定的限值。随着重载铁路年运量的提高,RC板梁的疲劳失效概率显著增大。运营列车轴重从23 t增大至25 t对RC板梁的疲劳可靠度影响较小。开行30 t轴重列车会造成RC板梁的疲劳可靠度严重下降,需要加强重载铁路桥梁的养护维修。研究结果可为重载铁路RC桥梁的设计与养护...  相似文献   

15.
文章调研了目前关于车轴材料属性和载荷条件离散性对剩余寿命的影响的处理方法并进行了简要总结;建立了车辆系统刚柔耦合动力学模型,提取了车轮20阶多边形条件下各工况车轴危险截面应力-时间历程,进行了应力谱的编制;基于小试样裂纹扩展试验数据拟合得到了NASGRO方程裂纹扩展参数,计算得到车轴卸荷槽部位裂纹深度为2~40 mm的剩余寿命;考虑材料属性和载荷条件离散性来制定车轴剩余寿命计算的安全系数;结合剩余寿命计算结果、超声波检测裂纹检出概率曲线和车轴失效概率制定了车轴合理的检查间隔。结果表明,车轮多边形条件下,车轴剩余寿命为38.5万km,考虑材料属性和载荷条件离散性的安全系数分别为1.26和1.33,得到车轴检查间隔为3.8万km。  相似文献   

16.
针对地铁车辆车体动应力测试样本数据不足以全面评估全寿命服役周期下应力特征的问题,以某地铁车辆为例开展了车体动应力谱外推及寿命评估方法研究。首先,获取服役地铁车辆车体枕梁位置实测应力时程,结合参数估计、核密度估计方法开展动应力谱外推研究;然后,综合2种方法的局限性,提出了分段拟合函数表征的应力谱外推方法,基于拟合得到的应力分布规律外推获得了等效应力幅值谱;最后,评估得到了车体枕梁关键部位的疲劳寿命。结果表明:基于分段应力概率密度函数表征的载荷谱外推方法考虑了列车全寿命周期服役下的载荷极值影响,弥补了单一参数估计拟合误差较大以及核密度估计拟合依赖样本值的不足。  相似文献   

17.
提速转向架焊接构架疲劳寿命的实用分析方法   总被引:11,自引:3,他引:8  
评估随机载荷作用下焊接构架的疲劳强度,并开展随机载荷下焊接构架疲劳寿命及可靠性研究。提出焊接构架疲劳控制部位的确定方法。开发用于采集应力时间历程的多通道、能连续十几小时工作的数据采集系统,研究了多种提高数据可靠性技术。建立基于累积破坏率的非线性二维疲劳累积操作准则及可靠性分析判据,在此基础上建立疲劳寿命及可靠性分析模型。对焊接构架用16MnR钢两种常用接头进行了系统的疲劳试验研究,得出接头疲劳性能数据曲面。对提速客车所用的209HS型转向架焊接构架的疲劳寿命及可靠性进行分析计算,得出可靠度为50%条件下大约可以运用5 75年;在99%的可靠度下,只能运用2 47年的结论。  相似文献   

18.
通过对机车车辆全程实测的应力数据进行拟合处理得到应力谱,采用概率断裂力学基本方法,运用应力—强度干涉模型计算出在所要求可靠度指标下裂纹尺寸与疲劳寿命间的曲线关系,并计算分析了裂纹在不同初始条件下的扩展变化规律。  相似文献   

19.
针对仿真或仅考虑紧急制动状态下动车组制动盘盘毂安全性分析中存在的不足,基于盘毂应力在线测试,分析动车组高速运行和不同制动方式下盘毂的频谱特性和成分特性;考虑应力集中,根据静力等效原则进行毂齿根部的应力线性化,分析不同制动方式对盘毂疲劳损伤的影响;采用指数模型拟合和核密度估计相结合的方法,推理97.5%置信度下的盘毂实测应力谱,并考虑车轮镟修前后盘毂损伤演化和材料强度退化,评估盘毂服役安全性。结果表明:盘毂载荷振动频率主要分布在0~71 Hz和341~680 Hz频带,车轮镟修可有效降低341~518 Hz频带内的载荷振动、消除518~680 Hz频带内的载荷振动;动车组高速运行和车轮状态不良是造成盘毂损伤的主要原因;若按盘毂服役寿命为1500万km计算,盘毂疲劳薄弱区的等效应力为37.4 MPa,累积损伤为0.61,该结果可为盘毂的结构设计和检修维护策略制定提供依据。  相似文献   

20.
提速货车转K2型转向架侧架疲劳寿命预测   总被引:2,自引:0,他引:2  
在建立C64K货车非线性系统动力学模型的基础上,对该货车在沈大线上运行的过程进行仿真研究,得到转K2转向架侧架动态载荷的时间历程曲线;通过建立转K2转向架侧架有限元模型,计算单位载荷下各部位应力,从而得到转向架侧架危险截面部位在典型线路的概率疲劳应力谱,为预测转K2转向架侧架的疲劳寿命提供依据.研究表明:转K2侧架的疲劳寿命最低点均在导框内弯角处,转K2转向架侧架在可靠度为95%和99%时所对应的疲劳寿命分别为689×104 km和490×104 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号