首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
密布横梁正交异性板整体桥面受力行为   总被引:3,自引:0,他引:3  
采用空间有限单元法和模型试验,研究南京大胜关长江大桥三主桁(拱)密布横梁体系钢正交异性板整体桥面结构的受力行为。研究结果表明:50%以上的桥面荷载通过下弦杆或系梁传至下弦节点,这部分荷载会引起下弦杆或系梁的竖向弯曲。针对三主桁(拱)密布横梁正交异性板桥面结构,提出桥面荷载在3片主桁(拱)中的2次分配的分析方法,第1次桥面荷载分配在3片主桁下弦杆或3片桁拱系梁中进行,中桁与每片边桁分配到的荷载比约为2.3~3.3,支座处大,跨中小;第2次桥面荷载分配通过横联在上弦节点中进行,中桁将0~24%的桥面荷载分配给2个边桁,跨中大,支座处小;经2次分配后,在离支座1~2节间以外的区域,中桁与边桁分配到的总荷载比约为1.0~1.2,靠近支座的区域,中桁与边桁分配到的总荷载比仍为2.5~3.3;只有第1次分配到的桥面荷载引起主桁下弦杆和桁拱系梁竖向弯曲,中桁(拱)的吊杆力、下弦杆和系梁的竖向弯矩约为边桁的2倍以上。  相似文献   

2.
下承式铁路钢桁结合桥的桥式结构比较   总被引:11,自引:0,他引:11  
张晔芝 《铁道学报》2005,27(5):107-110
下承式钢桁结合桥刚度大,建筑高度低,行车噪声小,舒适度高,拟在我国客运专线、高速铁路建设和既有线路提速改造中应用。目前我国大陆还没有一座下承式钢桁结合桥。世界上已有一些成功应用的经验,但相关资料较少。本文介绍了日本北陆新干线、法国高速铁路地中海线以及我国台湾正在修建的高速铁路上几座有代表性的下承式钢桁结合桥和笔者等正在进行的下承式钢桁结合桥试验模型资料;将这些桥式结构按其与主桁和桥面系的结合方式分为三类;对桥式结构、受力特点、横向刚度、建筑高度等进行分析研究和比较;提出了下承式钢桁结合桥需要进一步深入研究的一些问题。这些工作将有助于下承式钢桁结合桥在我国的应用。  相似文献   

3.
为了解高速铁路钢桥结构噪声辐射特性,基于车-线-桥空间耦合振动理论和统计能量分析原理,提出高速铁路钢桥结构噪声预测模型,对其辐射噪声空间分布规律和结构各部分声贡献量进行分析。该预测模型采用空间板梁混合有限元模型进行车-线-桥空间耦合振动分析,得到桥面板的振动速度时程,经FFT变换后得到频域内的结果,作为后续统计能量模型的输入。通过求解统计能量平衡方程,得到系统振动能量分布和传递结果,根据振动声辐射理论,求得桥梁结构噪声。对64m钢桁结合梁的分析结果表明:钢桥结构噪声波阵面为略显纺锤形的柱面波;纵、横梁和主桁为主要声源;纵、横梁和主桁的噪声峰值频段分别为1 000 Hz和630 Hz;随着至线路中心线的距离增加,近主桁辐射结构噪声衰减最快;近场噪声衰减速度比远场快。  相似文献   

4.
以1座下承式连续钢桁结合梁桥为例,采用有限元法研究了桥面系的受力特性,考察了中支座区域桥面系受力状态与混凝土板板厚、纵梁抗拉刚度及抗弯刚度的关系;针对纵横梁及混凝土板在中支座区域受力比其他区域突出的问题,探讨解决方案。研究结果表明:在中支座两侧节间内,随着纵梁抗拉刚度的增加,纵梁轴力增加速度逐渐减慢,且低于抗拉刚度的增加速度;随着纵梁抗弯刚度的增加,纵梁竖向弯矩也增加;采用较高的纵梁或增加混凝土板厚对降低中支座区域纵横梁的应力效果并不明显,相对而言,选择合适的纵梁高度并增加翼缘厚度或采用4根小纵梁的方法均可降低该区域纵横梁的应力水平,在中支座两侧节间内再布置横梁时纵横梁的应力可进一步降低。  相似文献   

5.
上承式钢板梁桥动力特性分析   总被引:1,自引:0,他引:1  
提出了一种计算上承式钢板梁桥动力特性的方法。文中分别采用梁段有限单元、空间杆元计算上承式钢板梁桥中主梁、联结系的刚度矩阵与质量矩阵,采用子空间迭代法求解特征方程,所得结果与实测资料相等。  相似文献   

6.
结合模态应变能法和统计能量分析,提出约束阻尼层桥梁车致振动与结构噪声理论计算方法,探讨约束阻尼层参数对高速铁路钢桁结合梁桥噪声的影响规律。分析结果表明:高速铁路钢桁结合梁桥辐射结构噪声问题突出,亟需减振降噪处理;钢桁梁主要构件中腹板辐射噪声大于翼缘板,对腹板敷设约束阻尼层进行减振降噪更有效;阻尼层剪切模量增大对高频降噪有利;相同的约束阻尼层构造对厚度越小的基层,减振能力越强;约束阻尼层可明显降低钢梁的局部振动,并能降低全频段的桥梁噪声;约束阻尼层对高频段噪声的降低量大于低频;敷设约束阻尼层使场点M(水平距近轨中心线25m、竖向高出轨面3.5m)的声压级降低5.1dB(A),其质量仅为结构恒载的0.15%。  相似文献   

7.
下承式钢板梁桥横向刚度加固研究   总被引:3,自引:0,他引:3  
根据车桥耦合振动理论,结合下承式钢板梁桥构造,提出采用最佳下平纵联尺寸的加固方法,提高钢板梁桥刚度,改善桥梁横向振动。对沪宁线#165A桥加固分析的结果表明,当下平纵联杆件截面尺寸增至4倍时,桥梁横向刚度明显提高,横向振动得到有效抑制。研究还发现,对下承式钢板梁的加固不宜采用主梁加固方式。  相似文献   

8.
9.
以京沪高速铁路64 m简支下承式钢桁结合梁桥为对象,采用作者曾经提出的空间板梁单元和常规板壳单元、空间梁单元和空间桁单元离散结构,对其在偏载荷载作用下的受力特性进行空间有限元分析,计算主桁、混凝土板和纵、横梁的应力和位移。结果表明:该桥在偏载荷载作用下符合强度刚度要求。  相似文献   

10.
11.
铁路密布横梁体系整体钢桥面由于没有纵梁,其受力行为与一般纵横梁体系正交异性板结构存在差异。本文结合厦深铁路榕江特大桥主桥,对铁路密布横梁体系正交异性整体钢桥面进行静载试验和有限元分析。得出结论如下:第一体系轴力主要由下弦杆承担,越靠近模型中部下弦杆承担比例越小;第二、第三体系中,横梁(肋)与面板组成的截面沿横向越靠近中部其承受的弯矩越大,横梁(肋)承受的弯矩增长更快,且承担比例先增大后减小,在荷载作用点处达到最大,面板反之,在荷载作用点分担弯矩比例最小。将有限元模型计算结果与试验实测结果对比分析,两者吻合较好,印证了理论计算的正确性和实测结果的可靠性。  相似文献   

12.
13.
针对下承式钢桁结合梁桥,通过有限元分析,对全结合桥面系和部分结合桥面系两种结合方式进行探讨研究,了解结合梁桥的受力特点。  相似文献   

14.
蓝天  张南 《铁道建筑》2004,(6):15-17
某三孔跨度 2 0m有碴桥面低高度钢筋混凝土梁桥 ,在运营期间发现梁侧有多道竖向裂纹。为了解桥梁在设计荷载作用下的实际工作状态及确定桥梁的安全承载能力 ,用ANSYS有限元程序对主梁增加横向联结前后的相关计算值与现场实测结果进行对比 ,并对双T梁增加横向联结对桥梁的受力性能的影响进行分析  相似文献   

15.
某钢桁桥在运营十余年之后,支承行车道板的横梁相继出现裂纹.通过对该桥梁裂纹病害分布和发展情况以及钢横梁在外荷载作用下受力的研究,分析钢桁桥裂纹病害的原因并提出整治措施.钢横梁的裂纹分布和发展具有很强的规律性,伸缩缝处横梁的裂纹相对其他部位出现的早而且严重;产生裂纹的原因与构造细节和车辆活载作用有关,属于疲劳裂纹;对局部构造进行加固改造可有效减小应力峰值,延迟疲劳裂纹的出现.应力集中和疲劳是导致钢桁梁出现裂纹的主要内因,桥梁的长期超负荷运营则是裂纹病害发生和发展的外因,提出的增设加劲板方案可以有效改善桥梁的局部受力情况,并在一定程度上可延缓裂纹的出现和发展.  相似文献   

16.
研究目的:地铁车站无梁体系相较传统的梁柱结构体系具有建筑空间大、能有效降低层高、减少车站埋深、施工支模简单、钢筋绑扎方便、设备安装方便、施工速度快等优点,但受力较为复杂,应用较少.本文以苏州地铁某标准车站为例,通过应用有限元分析软件Midas GEN,对竖向荷载下无梁体系与梁柱体系内力进行对比分析,得到无梁体系的内力分...  相似文献   

17.
基于列车脱轨能量随机分析理论,提出了预防列车脱轨的桥梁横向刚度限值的制定方法。运用此方法,分别制定了提速线32 m和40 m上承式钢板梁的横向刚度限值。对比该限值与新规范限值可知,新规范限值基本上满足预防脱轨与列车平稳运行的要求。  相似文献   

18.
针对高速铁路下承式结合梁系杆拱桥,通过有限元分析,对纵横梁桥面系和密布横梁桥面系2种结合方式、混凝土桥面板不同的分块方式等问题进行研究。结果表明:纵横梁桥面体系在纵横梁交点处存在应力突变,其横梁应力较密布横梁高。对于密布横梁方案,随着混凝土断缝数量的增多,系梁挠度增幅不大,系梁和拱肋内力变化不大,但横梁应力有所降低,混凝土桥面板的整体应力大致呈降低趋势;在施工上,密布横梁体系比纵横梁体系简单方便。对于128 m跨度双线下承式钢系杆拱桥的桥面结合方式,建议采用密布横梁体系,桁距16 m,混凝土桥面板设置断缝,按5节间(25 m 27 m 24 m 27 m 25 m)布置。  相似文献   

19.
根据平行索面斜拉桥的结构特点,椒江特大桥主桥采用了一种组拼式索梁锚固构造。通过建立斜拉桥索梁锚固区的实体有限元模型,对组拼式索梁锚固区进行有限元分析,得出索梁锚固区的应力分布特征。计算结果表明,该结构设计合理可行,可为索梁锚固设计提供借鉴。  相似文献   

20.
简支下承式桁梁结合梁的模型试验   总被引:5,自引:1,他引:5  
设计制作一个4节间下承式桁梁结合梁模型。分3个阶段10种荷载工况进行模型的力学性能试验,研究简支下承式钢桁结合梁桥的受力性能。结果表明:主桁的挠度和内力可以按平面桁架计算;桥面系中存在起控制作用的横梁,设计中应特别关注;纵梁主要受轴向拉伸和竖向弯曲作用,最大拉应力出现在每节间正中截面的下翼缘,内侧和外侧无多大区别;混凝土板的受力状态以竖向荷载作用下的弯曲为主;竖向偏载和水平偏载都不控制设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号