首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
以济南地铁龙奥站为依托,研究硬岩地层大跨无柱拱形地铁车站结构受力特性及施工技术,进行二维有 限差分数值计算,结果表明:基坑施工引起的支护结构水平位移及内力均较小,采用多级放坡开挖和喷锚支护的 方式可保证基坑安全施工;无柱拱形结构顶板弯矩、轴力值均较大,同时中板表现为偏心受拉状态,是主体结构 中的薄弱环节,但仍具有较大的安全系数,结构整体安全可靠。大跨无柱拱形车站施工技术已在济南地铁龙奥站 取得成功应用,可为类似工程提供借鉴。  相似文献   

2.
为实现地铁车站站台层大跨度无柱功能,以青岛地铁1号线薛家岛站拱形中板的设计为背景,运用有限元方法分析研究不同形式中板在静力及地震作用下的结构受力特性。分析结果表明:(1)静力分析中,拱形中板较其他形式中板而言,仅轴力值较大,其余内力及变形值均相对较小;跨中弯矩在外侧水土压力作用下为负弯矩,并呈正比例变化;受空间作用影响,洞口梁及节点处应力集中明显,梁扭转效应明显。(2)抗震分析中,E2、E3作用下得出中板时程位移曲线,最大层间位移角均满足规范限值要求; E2作用下,拱形中板构件内力较非地震工况增幅约25%。  相似文献   

3.
以佛山市城市轨道交通三号线大墩站-东平站区间下穿广佛城际铁路东平新城站为背景,研究区间隧道上方车站中板已完成施工、围护结构支撑已拆除、车站尚未封顶板时的盾构隧道下穿方案,采用Midas GTS NX建立盾构下穿广佛城际铁路东平新城站的三维计算模型。计算结果表明,随着支撑拆除和右线盾构隧道下穿,地下连续墙最大水平位移,竖向位移,总位移值分别为27. 83 mm、1. 367 mm、27. 94 mm,均小于30 mm,对连续墙变形影响很小,隧道下穿过程中连续墙最大弯矩值为1 405. 4 kN·m,最大剪力值为467. 9 kN,配筋满足要求。盾构下穿过程中现场监测数据表明,连续墙实际最大水平位移,竖向位移,总位移值分别为25. 74 mm、1. 421 mm、26. 83 mm,确保了佛山城市轨道交通三号线下穿盾构的顺利通过。  相似文献   

4.
为了研究地下水位对地铁车站主体结构的影响,利用ANSYS数值模拟计算在基本荷载组合情况下,不同地下水位的地铁车站主体结构的最大内力值和偏心距。通过比较分析,可以得到不同的地下水位情况下顶板、中板、底板以及侧墙的轴力和弯矩变化小,但是中板的偏心距在地下水位距地表10 m,在顶板以下6 m时,有一个最大峰值。虽然地下水位的变化对地铁车站主体结构的影响小,但是仍需对底层中柱底部进行加固。  相似文献   

5.
以北京某地铁高架车站为背景,建立了有斜撑与无斜撑站桥合一高架车站的有限元计算模型,分析了高架车站上、下层墩柱在地震作用下的位移响应。结果表明,地震作用下,有斜撑站桥合一高架车站与无斜撑站桥合一高架车站相比,墩柱顶部的竖向位移相差较小,斜撑对站桥合一高架车站竖向抗震作用并不明显;与无斜撑站桥合一高架车站相比,有斜撑站桥合一高架车站上层墩柱的横纵向水平位移响应有大幅降低,车站结构在水平方向上的抗震性能提高较大;有斜撑站桥合一高架车站的结构整体性更好,抗震性能更强,结构形式更合理。  相似文献   

6.
为确保附属结构施工过程中装配式车站主体的安全与稳定,需要了解附属结构施工过程中装配式车站主体结构的力学规律。以深圳地铁装配式车站13号线市中医院站为工程背景,通过有限元数值计算,对附属结构的施工过程中装配式车站主体的内力和变形进行分析。计算表明:①附属结构基坑开挖导致主体结构整体有向附属开挖一侧变形的趋势,结构内力出现重分布,附属结构施工开挖过程中主体拱顶弯矩最大增幅在开挖1阶段;②在附属结构施工过程中可以采取主体顶板上方设置临时支撑、主体拱顶对拉连接、加强支护刚度等措施对装配式车站主体的内力及变形进行控制,其中主体顶板上方设置临时支撑措施的效果显著。结合设计措施的计算及实施情况对控制措施的设计应用进行研究,为装配式地铁车站的设计提供借鉴。  相似文献   

7.
"桥建合一"型地铁高架车站的轨道梁刚接在站房结构框架梁上,存在严重的车致振动舒适度问题。为了研究列车过站时"桥建合一"型地铁高架车站的振动舒适度规律,以某典型侧式"桥建合一"型地铁高架车站为研究对象,采用数值计算软件Matlab建立27自由度列车模型,采用有限元软件Ansys建立车站有限元模型,基于分离迭代法实现列车-车站的耦合作用,并对比实测数据验证列车-车站耦合振动分析模型的准确性。采用已验证的列车-车站耦合振动分析模型计算列车到发站时站房的振动舒适度敏感点,并研究列车车速、楼板厚度和桥墩跨度参数对站房振动舒适度的影响。研究结果表明:"桥建合一"型地铁高架车站的结构动力特性具有特殊性,典型楼板的1阶竖弯频率为28.91 Hz,是高铁客运站的4.7~7.7倍;站厅层振动舒适度敏感点位于结构缝附近和车站端部悬挑区域,列车到站时站厅层振动超标最大为32%;站房的车致振动相应总体上随列车车速的增加而增大,列车正线过站时60~80 km/h速度区间与列车会车过站时20~40 km/h和60~80 km/h速度区间的楼板振动增幅较为显著;楼板的车致振动在其自振频率附近会产生"共振效应",楼板厚度参数对楼板自制频率的影响较小,桥墩跨度参数对楼板自振频率的影响较大,合理设计桥墩跨度可以有效避免楼板产生"共振效应"。  相似文献   

8.
为研究暗挖拱盖法施工时拱部矢跨比对车站结构的影响,以青岛某地铁车站工程为例,基于有限元分析软件MIDAS GTS,对比分析站台宽度为11 m和13 m两种车站结构下,不同矢跨比对其结构受力与变形的影响。研究结果表明:当矢跨比从0.16增大至0.24时拱部施工阶段拱顶弯矩最大,弯矩先减小后增大,整体结构施工时拱部与直墙交界处弯矩最大;两种跨度的车站弯矩分别减少了42.1%和44.6%;轴力随矢跨比的增大而减小,矢跨比对拱部施工阶段的影响较大;矢跨比对结构变形的影响非常明显,拱顶沉降、拱肩沉降与拱脚净空收敛均减少了1/3左右。在考虑整体结构施工与车站结构合理跨高时,拱部矢跨比越大,结构越合理。  相似文献   

9.
地铁车站抗震分析   总被引:1,自引:0,他引:1  
首先选取了车站主体结构建立合适的有限元模型,并进行静力分析,然后分别采用了谱分析和动力时程分析两种不同的计算方法对车站进行抗震计算分析,对谱分析计算、谱分析和时程分析的计算结果分别予以对比,得出在水平地震力作用下车站结构的最不利受力位置。主要结论包括:地铁车站结构的弯矩在静力时较小,在地震作用下其增幅较大,动力响应显著。地铁结构需要进行抗震计算,反应位移法、动力时程分析法均能适用于地下建筑结构的抗震分析。在水平地震力作用下,地铁车站结构中柱的地震轴力较大,是主要的承压构件,结构顶板的变形和应力比较大,容易发生破坏。因此在设计和施工过程中,应对上述部位予以足够的重视。  相似文献   

10.
采用考虑车站建造全过程影响的计算模型对典型地铁车站结构内力随建造过程的变化规律、分布模式及控制弯矩进行分析,并与不考虑建造过程的一次加载模型所得结果进行对比,研究建造过程对车站最终内力及其截面设计的影响。研究结果表明:采用考虑车站结构建造过程的方法时,在基坑开挖阶段,最大弯矩值逐渐增大,其位置逐渐下移;在主体结构回筑阶段,中板以上结构弯矩值增大,最大弯矩值点上移;在运营阶段,结构内力进行略微调整。采用考虑车站结构建造过程的方法时,顶板两端节点处弯矩值较大,且顶板至中板间的侧墙全部处于迎土面受拉状态;中板至底板间的侧墙处于背土面受拉状态;底板弯矩分布呈两端小、中柱附近大的特点。当忽略车站结构建造过程时,车站底板两端弯矩及连续墙负弯矩将远大于该处弯矩承载限值,而连续墙正弯矩偏小;当采用考虑车站结构建造过程的方法时,结构内力趋于合理,且均处于承载力允许范围,但连续墙最大负弯矩较前一方法明显偏小。为了保证结构的整体可靠性,设计中可考虑采用两种计算模型所得结果的包络线进行截面设计,但为了避免这种做法可能导致的过度设计,可以对负弯矩较大处采用调幅设计。  相似文献   

11.
不同站台宽度、柱网形式对地铁车站土建造价有重大影响。选取典型的地铁车站形式,对其结构内力及造价进行对比分析;对不同站台宽度的单柱及双柱车站内力分析其弯矩规律,并对比分析不同柱网形式下车站的弯矩变化规律。根据对比分析,11 m站台宽度的单柱车站及双柱车站的结构内力较合理,造价较低。对比分析的结论可为地铁车站方案决策提供参考。  相似文献   

12.
针对铁路大型站房的建筑特点及其结构体系的复杂性和多样性,在基于大量站房结构体系的类型及工程造价的基础上,采用主成分分析法和区间统计分析法,分析研究结构体系对工程投资影响的敏感因素,并重点分析抗震设防烈度、结构体系类型对工程投资的影响程度。数据表明:站房高架屋盖采用钢网架,高架层楼盖和轨道层采用预应力混凝土框架结构比较经济。另外站房高架屋盖最大柱距大于80 m或高架层楼盖柱距大于30 m时,其结构体系类型具有趋同趋势,高架屋盖最大柱距大于80 m时,采用钢网架结构具有较好的性价比;高架层楼盖柱距大于30 m时,采用钢结构对控制高架层标高十分有利。  相似文献   

13.
为保障西安火车站复杂条件下地铁车站的建设安全,首先开展地铁线路和站位比选,综合考虑建设安全及换乘方便等因素,提出地铁车站优化设计方案,进而讨论地铁车站NTR施工方案,采用数值手段分析不同施工阶段的位移变化规律。结果表明:方案2为最佳线位走向,地铁线路少部分入侵大明宫保护范围,施工规划满足工期要求;地铁车站采用NTR工法进行施工,钢管顶进对应拱顶处地层最大沉降量为-11.3 mm、地表路基沉降量为-9.6 mm,土体分层分步开挖引起拱顶处竖向最大沉降值达到-29 mm、地表路基沉降量为-22.7 mm;针对施工沉降控制难点过程提供对应的沉降控制措施。采用方案2及NTR方案可满足火车站咽喉区下地铁车站的建设安全与工期要求,研究结果可为类似工程的地铁车站设计提供依据。  相似文献   

14.
基于装配式车站结构现有研究成果,建立适用于装配式地铁车站结构的梁-复合弹簧简化动力分析模型,通过与三维实体模型分析结果对比,验证该模型的有效性,并应用该模型开展装配式地铁车站结构与同型现浇结构的横向地震反应对比分析。结果表明:水平地震作用下,装配式车站结构和同型现浇结构的变形差异不大;其截面内力波动趋势与现浇结构一致,且均在同一时刻达到峰值;其典型截面的弯矩及弯矩波动幅度均小于现浇结构,其注浆式榫槽接头减小了结构截面弯矩及弯矩波动的幅度,减弱了结构在地震作用下的弯矩响应。该研究可为预制装配式地铁车站结构抗震计算提供技术支持,为预制装配技术应用于地下结构建设提供参考。  相似文献   

15.
地下轨道交通系统是城市生命线工程的重要组成部分,其中的换乘地铁车站建设规模大、客流量大、结 构复杂,有关抗震问题值得关注。基于南京某 T 型换乘车站结构,建立地层-结构三维动力时程分析模型,模拟 土-结相互作用系统在水平地震荷载作用下的动力响应,分析不同类型和不同幅值的地震动作用下 T 型换乘车站 结构的位移响应规律。计算结果表明:T 型换乘车站结构的最大水平位移及截面最大顶底位移差均出现在垂直于 地震动输入方向的 3 层线路车站的顶板部位,沿 3 层车站的纵向位移,远离 T 型交叉部位;T 型换乘车站结构水 平位移及顶底水平位移差的最小值均发生在两线车站 T 型交叉部位。  相似文献   

16.
基于成都轨道交通高架车站钢结构雨棚方案比选和结构设计,围绕高架车站站台钢结构雨棚与下部混凝土结构考虑协同作用对比分析。通过对不同高架车站下部混凝土结构和相同上部钢结构,采用有限元软件MIDAS建立整体和独立模型,对结构分别采用反应谱分析、屈曲分析进行对比计算。找出结构整体模型计算在周期模态、最大层间位移、最大层间位移角、柱底反力、屈曲临界荷载等方面与下部混凝土结构独立计算存在的差异。分析结果表明,高架车站独立模型计算的周期均小于整体模型计算;两种模型的层间位移和柱底反力均存在差异,其中单墩柱整体模型计算不能忽视;整体模型比独立模型计算的屈曲临界荷载值大。  相似文献   

17.
在地铁工程建设中,盾构法施工得到推广使用。而当近距离侧穿建筑物的桩基时,盾构推进会对桩基周围土体及桩基产生影响,从而引起地表沉降,危及建筑物的安全。此文以深圳地铁某隧道区间盾构施工近距离侧穿一建筑物桩基为工程背景,选取桩基与隧道间距最小的断面,采用有限元软件,建立数值计算模型,研究盾构推进对桩基周围土体及桩基的影响程度,以及造成的地表沉降。研究结果表明:桩身最大侧向位移出现在隧道轴线位置附近,桩的竖向沉降量沿桩长变化很小,桩身弯矩沿桩身分布,有正弯矩区和负弯矩区,桩身轴力沿桩长逐渐增大,到隧道轴线位置时达到最大值。隧道顶正上方地表沉降最大,为12.6 mm,两侧沉降量逐渐减少,形成一个横向沉降槽。  相似文献   

18.
论述盖挖逆作法施工地铁车站,中间柱施工是一道十分关键的工序,一旦柱位出现偏差,很难采取补救措施.介绍南京地铁新街口站采用的一整套完整的施工工法,即将可倒用的钢套管作为隔水工具,形成地下操作空间,采用具有自动导向的定位器,精确完成钢管柱安装及杯口砼的浇注.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号