首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究扣件胶垫温变特性对车辆、轨道和桥梁的振动影响规律,以高速铁路WJ-7型扣件胶垫为研究对象,通过其动态力学性能试验得到不同温度下扣件的动参数,然后代入建立的车辆-轨道-桥梁耦合振动时域模型中进行分析.研究结果表明:扣件的动刚度和阻尼随温度降低而增大,低温时更为显著.从时域响应来看,当温度降低时,车体加速度和桥梁位移基本无影响,轮轨力、扣件力、轨道板加速度和桥梁加速度增大,钢轨的位移和加速度则减小.从频域响应来看,当温度降低时,轮轨力和扣件力在低频基本无变化,轮轨力主频向高频偏移且峰值增大,扣件力中高频峰值明显增大.钢轨在8~100 Hz范围内振动减弱,在125~315 Hz振动加剧,轨道板在80~400 Hz振动加剧,桥梁在80~250 Hz振动加剧.  相似文献   

2.
为研究扣件胶垫温变特性对车辆、轨道和桥梁的振动影响规律,以高速铁路WJ-7型扣件胶垫为研究对象,通过其动态力学性能试验得到不同温度下扣件的动参数,然后代入建立的车辆-轨道-桥梁耦合振动时域模型中进行分析.研究结果表明:扣件的动刚度和阻尼随温度降低而增大,低温时更为显著.从时域响应来看,当温度降低时,车体加速度和桥梁位移基本无影响,轮轨力、扣件力、轨道板加速度和桥梁加速度增大,钢轨的位移和加速度则减小.从频域响应来看,当温度降低时,轮轨力和扣件力在低频基本无变化,轮轨力主频向高频偏移且峰值增大,扣件力中高频峰值明显增大.钢轨在8~100 Hz范围内振动减弱,在125~315 Hz振动加剧,轨道板在80~400 Hz振动加剧,桥梁在80~250 Hz振动加剧.  相似文献   

3.
基于CRTSⅡ型板式无砟轨道关键参数对行车安全的影响,指导轨道结构的优化,利用有限元方法和轮轨系统耦合动力学原理,建立车辆-轨道-路基系统垂向耦合动力学模型,研究轨道结构关键参数对列车的振动特性和轮轨垂向作用力的影响规律。研究结果表明:轨道板厚度对行车平稳性基本无影响;当扣件刚度从20 kN/mm增加到100 kN/mm时,轮对和转向架的振动加速度分别增加43.94%和7.98%,轮轨垂向力增加29.83%;扣件阻尼从20 kN·s/m增大到100 kN·s/m时,轮对和转向架的振动加速度分别减小21.64%和7.09%,轮轨垂向力减小9.48%,车体变化不大;为保证行车的安全性和平稳性,扣件阻尼和混凝土支承层厚度应尽可能取较大值。  相似文献   

4.
为研究城际铁路纵向承台式无砟轨道扣件系统关键参数取值,基于车辆-轨道耦合动力学理论,建立客车-无砟轨道-桥梁耦合动力学模型,分析扣件刚度、扣件间距对桥上无砟轨道系统动力响应的影响规律,并基于层次分析法,对桥上无砟轨道系统动力特性进行综合评价。结果表明:随着扣件系统刚度增大,钢轨垂向位移减小,车体振动加速度、轮轨垂向力、轮重减载率和桥梁振动加速度均增大;随着扣件间距的增大,轮轨垂向力减小,车体振动加速度、轮重减载率、钢轨垂向位移和桥梁振动加速度均增大;综合考虑轨道变形以及工程造价,建议扣件系统刚度为50~80 kN/mm,扣件间距为0.6~0.7 m。  相似文献   

5.
胶垫是轨道结构中的重要部件,起着缓冲轨道结构剧烈振动并保护轨下结构的重要作用。现场调研发现,随着轨下胶垫的老化,其减振与弹性性能逐渐降低。为得出运营状态轨下胶垫老化前后刚度的变化规律,本文选取现场老化胶垫进行室内常温状况下的静刚度测试,并基于其试验结果,利用有限元软件ABAQUS建立有限元动力学模型,对比分析胶垫老化对轨道结构动力特性的影响。试验得到2组实际运营地段无砟轨道老化胶垫平均刚度分别为144,79 k N/mm,均大于新胶垫刚度40 k N/mm。理论计算结果表明:当胶垫刚度分别为40,79,144 k N/mm时,钢轨垂向位移最大值分别为0.95,0.74,0.63 mm,而扣件垂向力最大值分别为32.1,39.2 k N。  相似文献   

6.
研究目的:为研究地铁钢轨波磨条件下扣件胶垫频变特性对轮轨系统振动响应的影响规律,本文首先测试并表征地铁扣件橡胶垫板的频变力学特性,然后建立地铁车辆-轨道垂向耦合动力学频域分析模型,并以某地铁实测钢轨波磨数据作为激励输入,计算和分析地铁扣件胶垫频变特性对轮轨系统高频动力响应的影响。研究结论:(1)在双对数坐标系下,扣件胶垫刚度(阻尼系数)随激振频率呈近似线性正相关(负相关);(2)考虑胶垫频变特性后,除钢轨振动加速度外,轮轨系统在波磨诱发频率范围内的动力响应均显著减小,但钢轨振动响应主频仍然在波磨诱发频带;(3)胶垫频变特性会增大轮轨系统在35~90 Hz以及700 Hz以上频段的振动响应,因此在预测地铁环境振动和高频轮轨噪声等问题时应考虑扣件胶垫频变特性;(4)本研究结论可为地铁钢轨波磨条件下轮轨系统的准确动力评估提供理论与试验依据。  相似文献   

7.
有砟轨道在施工阶段存在大量的钢轨接头会加剧轮轨间冲击和振动,造成钢轨伤损,影响轨道平顺性,不利于工程车辆行车安全,合理的道床刚度能减缓钢轨接头处轮轨间的冲击作用,改善临时轨道结构的受力和变形。基于多体动力学理论,以21 t轴重平车为研究对象,建立车辆-钢轨接头耦合动力学模型,研究钢轨接头区轮轨动力响应,分析道床刚度对轮轨冲击的影响规律。结果表明:钢轨接头区的轮轨冲击较为显著,其轮轨垂向力比非接头区增大约1.4倍。随着道床刚度增加,轮轨垂向力呈非线性增加趋势,钢轨和轨枕的垂向加速度和垂向位移均呈减小趋势,道床刚度为170 kN/mm时,轮重减载率最大值为0.63,接近我国规范的允许限值0.65;道床刚度小于45 kN/mm时,钢轨和轨枕的位移均超出了我国规范允许值(2.5 mm和2.0 mm)。因此,施工阶段应对道砟进行合理的捣固,宜将道床刚度控制在45~170 kN/mm。  相似文献   

8.
弹性支承块式无砟轨道的减振机理   总被引:5,自引:0,他引:5  
陈小平  王平  陈嵘 《铁道学报》2007,29(5):69-72
为了揭示弹性支承块式无砟轨道的减振机理,为轨道减振设计提供理论依据,运用模态分析法,分析扣件刚度、块下胶垫刚度及部件刚度匹配对轨道减振效果的影响,结果表明:扣件刚度对钢轨570 Hz以下的振动具有较好的减缓作用,对钢轨的高频振动基本没有减缓作用;降低块下胶垫刚度能提高块下胶垫的减振效果;扣件与块下胶垫刚度同取为20~40 kN/mm时,钢轨与支承块将产生共振作用,较高的扣件刚度与较低的块下胶垫刚度相匹配,能提高轨道的减振效果。  相似文献   

9.
以Vossloh300型扣件胶垫为研究对象,利用配备温度箱的万能试验机得到其在20?℃下的静刚度值。基于Timoshenko梁理论建立车辆-轨道垂向耦合系统随机振动分析模型,探究该型扣件胶垫频变刚度在不同频段内对轮轨系统随机振动频域特征的影响规律。实验结果为:Vossloh300型扣件胶垫静刚度在3~5?Hz激振条件下的测试值为22.4?k N/mm。仿真分析表明:Vossloh300型扣件胶垫刚度频变特性对CRH380型高速动车组轮轨系统高频振动影响较小,但对其1/3倍频中心频率为40~100?Hz影响较大,扣件力最大增幅达30.98%,并且使轨道结构振动增加2?dB。因此,在进行轮轨系统振动分析时,应考虑扣件胶垫刚度的频变特性。  相似文献   

10.
WJ-8型小阻力扣件轨下橡胶垫板滑出动力学研究   总被引:1,自引:1,他引:0  
基于轨下胶垫滑出后扣件支撑刚度减小和轮轨系统动力学基本原理,建立车辆-轨道-桥梁垂向耦合动力学模型,计算分析轨下胶垫滑出对车辆与轨道结构的动力学性能的影响,得出以下结论:(1)随着轨下胶垫滑出量的增加,车辆与轨道结构的振动加速度、钢轨与道床板的垂向位移、最大轮轨力、减载率均有增大趋势;最小轮轨力有减小趋势;且随着轨下胶垫滑出量的增加,车辆以及轨道结构的动力学指标的变化趋势逐渐增大。(2)基于车辆以及轨道结构的动力学指标,轨下胶垫滑出量不宜大于120 mm。  相似文献   

11.
轨下垫板刚度的时变特性及其影响研究   总被引:4,自引:4,他引:0  
以WJ7-A型轨下垫板为对象,测试轨下胶垫刚度随服役时间的变化,分析垫板刚度的时变特性;然后以此为基础,建立车辆-轨道垂向耦合动力学模型,研究轨下胶垫时变特性对轮轨随机振动响应的影响规律。研究结果表明:随着服役时间的增长,轨下橡胶垫板的刚度将增大,2年后垫板刚度的增幅为13.91%;随着运营时间的增长,车体振动加速度变化微弱;轮轨力及扣件力的第二主频幅值增大并向高频移动,且扣件力变化更显著,线路运营2年时间后,扣件力第二主频向高频移动7.4 Hz,幅值增幅达到53.80%。建议定期抽样测试轨下胶垫刚度并及时更换性能老化垫板,降低轮轨垂向力和扣件力。  相似文献   

12.
合成轨枕式无砟轨道结构垂向动力特性分析   总被引:1,自引:0,他引:1  
通过合成轨枕式无砟轨道结构的半车—轨道垂向耦合动力学模型,研究了焊接不平顺激励下,扣件刚度、枕下支承刚度等对结构垂向动力特性的影响。分析表明:扣件刚度、阻尼及树脂砂浆弹性模量对行车安全性及平稳性影响不大。扣件刚度增加,对轨道系统的动力特性有一定影响,其中钢轨位移减少最为显著;扣件阻尼增加后,钢轨垂向振动加速度明显减小;树脂砂浆弹性模量增加,轨枕垂向振动加速度减小显著,钢轨垂向振动加速度增加。  相似文献   

13.
为了更好地进行聚氨酯减振浮置板轨道结构的选型设计,建立车辆-轨道系统动力分析模型,研究轨道板厚度、扣件刚度、减振垫刚度对聚氨酯减振浮置板轨道结构动力响应的影响。结果表明:轨道板厚度增大会导致钢轨加速度相应增大,而钢轨位移、轨道板加速度、基底加速度显著减小;扣件刚度减小会导致钢轨垂向位移增大,而钢轨、轨道板、基底加速度不同程度减小;减振垫刚度增大会导致钢轨垂向位移、垂向加速度减小,而轨道板、基底垂向加速度平稳增大。结合工程实际,建议轨道板厚度取260~300 mm,扣件刚度取20~40 kN/mm,减振垫刚度取0.02~0.03 MPa/mm。  相似文献   

14.
研究目的:为研究重载铁路桥上长枕埋入式无砟轨道扣件系统关键设计参数取值,本文基于弹性地基梁理论和车辆-轨道耦合动力学理论,建立32.5 t轴重重载货车-长枕埋入式无砟轨道-桥梁垂向耦合动力学模型,分析扣件刚度、扣件间距对重载铁路桥上长枕埋入式无砟轨道静、动力学性能的影响规律,提出重载铁路桥上长枕埋入式无砟轨道扣件系统设计参数取值。研究结论:(1)钢轨垂向位移和钢轨轨底应力随扣件系统刚度的增大而减小,车体垂向振动加速度、轮重减载率、轮轨力和桥梁垂向振动加速度随扣件系统刚度的增大而增大;(2)钢轨垂向位移、钢轨轨底应力、车体垂向振动加速度、轮重减载率和桥梁垂向振动加速度随扣件间距的增大而增大,但轮轨垂向力随之减小;(3)综合考虑轨道变形以及工程造价,建议重载铁路桥上长枕埋入式无砟轨道扣件系统的静刚度取为40~60 k N/mm,扣件系统的动刚度取为80~100 k N/mm,扣件间距取为0.6~0.65 m;(4)本研究成果可为重载铁路桥上长枕埋入式无砟轨道结构设计提供参考。  相似文献   

15.
为分析45 t轴重重载铁路有砟轨道扣件系统刚度合理取值范围,首先,使用钢轨容许应力法及轨道容许变形法分析扣件系统静刚度合理取值范围;然后,建立45 t轴重重载货车-有砟轨道空间耦合动力学模型,以美国五级谱及钢轨焊缝不平顺作为该耦合系统激励,通过分析车轨耦合动力学模型在不同激励、不同动刚度下的动力响应变化,分析扣件系统动刚度合理取值范围。结合钢轨容许应力法及轨道容许变形法,建议扣件系统静刚度范围为200~240 kN/mm;通过综合比较最大轮轨垂向力、最大枕上压力、最大钢轨垂向位移及最大轮重减载率4个评价指标在不同轮轨系统激励及不同扣件系统动刚度下的变化范围,建议扣件系统动刚度范围取240~300 kN/mm。  相似文献   

16.
针对柔性轨道下因谐波磨耗车轮激励而引发钢轨和轮对振动时的轮轨蠕滑问题,在分析柔性轨道下轮轨间滚动接触振动对轮轨蠕滑特性影响机理的基础上,基于CRTS型双块式无砟轨道和CRH2型高速列车,采用ANSYS和UM软件建立柔性轨道下高速列车的动力学数值模型;选取6种典型谐波磨耗(阶数分别为1,6和11阶;对应波深分别为0.1和0.3mm)车轮,进行轮轨滚动接触振动特性、轮轨蠕滑力和蠕滑率的分析。结果表明:车轮谐波磨耗阶数和波深的增加均导致钢轨垂向加速度、轮对垂向加速度、轮轨垂向力及轮轨蠕滑力和蠕滑率的大幅增加,且与阶数的影响相比,波深对滚动接触蠕滑特性的影响更大;当车轮的谐波磨耗取11阶和0.3mm波深时,轮轨垂向力最大值、钢轨垂向加速度最大值、轮对垂向加速度最大值和平均值、纵向蠕滑率平均值、纵向蠕滑力绝对平均值、横向蠕滑力最大值、纵向蠕滑力最大值分别约为车轮无谐波磨耗时的7.27,49.6,20.35,15.18,7.8,9.064,6.7和8.57倍;考虑柔性轨道后,轮轨接触脱离时间明显增加,轮轨蠕滑率和蠕滑力也有明显增大。  相似文献   

17.
研究目的:目前,轨道刚度变化对车辆-轨道耦合系统频率响应的影响规律尚不明确,本文基于车辆-轨道耦合动力学理论,以既有提速线路为例,从频率角度,研究轨道刚度变化对车辆-轨道耦合系统振动响应的影响。研究结论:(1)轨道刚度的变化,对车体、转向架的振动影响较小,对轮对及轨道结构的振动影响较大;轨道刚度的增大,对27 Hz以下的低频振动基本无影响,27~70 Hz之间的中低频振动略有降低,100 Hz以上的中高频振动显著增大;(2)随扣件刚度的增大,轮轨力谱以及轮对、钢轨振动加速度谱的最大值均显著增大,且振动频率有向高频发展的趋势;(3)随道床刚度的增大,频率响应谱的最大值变化相对较小,轮轨力、轮对、钢轨和轨枕的振动频率向高频移动;(4)总体上看,扣件刚度对耦合系统振动响应的影响较大,在线路维修时应及时更换恶化的扣件系统,道床刚度变化的影响相对较小,其维修周期可适当延长;(5)该研究可指导轨道结构的优化设计以及轨道的养护维修。  相似文献   

18.
既有城市轨道交通车辆段或停车场减振扣件的刚度均基于正线80 km/h及以上列车运行速度进行设计,一般为15 kN/mm。而在车辆段或停车场内列车的运行速度远低于正线的运行速度。为了探索与车辆段或停车场行车速度相匹配的减振扣件的刚度,基于车辆-轨道耦合动力学理论,建立了三维动力学仿真模型,研究了降低减振扣件的刚度值对车辆系统、轨道系统动力学响应及减振效果的影响。结果表明:随着减振扣件刚度的减小,钢轨垂向位移、轨下基础部分振动的变化显著;在列车运行速度小于30 km/h的车场线使用减振扣件时,其垂向刚度取值可以远低于既有的15 kN/mm,但是不宜低于4 kN/mm;若减振扣件垂向刚度取4 kN/mm,轨道的减振能力可提高7.18 dB,且车辆轨道系统的动力学响应仍低于正线80 km/h行车速度下既有减振扣件对应的动力学响应。  相似文献   

19.
以莫喀高铁为工程背景,以WJ-8型扣件胶垫为对象,测试胶垫静刚度随温度降低的变化,分析胶垫刚度的温变特性;建立车辆-轨道垂向耦合系统动力学模型,分析在-48℃和20℃两种温度下胶垫静刚度对高铁列车以400 km/h的速度运行所产生的动力响应的影响规律。结果表明:轨下胶垫的刚度随温度降低而增大,-48℃时的静刚度相比20℃时增幅51.1%;不同环境温度下,车辆运行平稳性受到影响较小而轮对垂向振动加速度受到影响较大;低温条件下垂向轮轨力和轮重减载率较常温时前者增幅8.19%而后者增幅达14.13%;因在-48℃低温条件下轮重减载率已接近于限值,为保证车辆运行安全性,建议采用耐低温类型的扣件胶垫。  相似文献   

20.
采用ABAQUS软件及轮轨真实形状尺寸参数,建立轮轨高频接触有限元模型;以我国某高速铁路钢轨波磨区段实测轨道短波不平顺作为有限元模型输入,在时域和频域上对比轴箱垂向加速度仿真结果与实测数据,验证模型的准确性;仿真计算钢轨波磨区段不同幅值轨道短波不平顺工况下轮轨垂向力、轴箱垂向加速度分布特性,研究钢轨波磨指数与轨道短波不平顺幅值之间的关系。结果表明:在钢轨波磨区段,轮轨垂向力最大值与钢轨波磨指数最大值出现的位置对应良好,在轮轨不脱离接触的前提下,钢轨波磨指数与轨道短波不平顺具有较好的线性相关性;通过曲线拟合可知,在钢轨波磨波长为150 mm时,轨道短波不平顺幅值为0.10和0.12 mm时对应的钢轨波磨指数分别为5.12和6.68。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号