首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
降雨或地下水波动会影响列车荷载作用下铁路路基的力学与变形响应,特别是膨胀土路基.为此,以泥质砂岩混合土为膨胀性地基,A组填料为基床,建立1:2大比例高速铁路无砟轨道路基物理模型试验,通过对路基浸水分析加卸载循环作用下路基土压力与变形分布规律.试验结果表明,浸水对铁路膨胀土路基具有明显影响,基床表层底面处土压力呈明显非均...  相似文献   

2.
张然 《铁道建筑》2020,(2):91-94
依托宝兰客运专线路基的地基处理工程,研究深厚层强湿陷性黄土地基处理新技术。对刚柔性组合桩复合地基在湿陷性黄土地区的应用进行深入研究,首次提出了地基处理设计中工后沉降的计算方法。研究结果表明:在深厚层湿陷性黄土地基处理时,柔性短桩长度宜控制在5~10 m;当路基荷载超过200 kPa(路基填高超过8 m)时,应适当增加刚性桩的桩土应力比值,以提高刚性桩荷载分担比,充分发挥长桩的作用。宝兰客运专线自开通运营以来,刚柔性组合桩复合地基段路基状况良好,列车运行平稳。  相似文献   

3.
随着我国高速铁路飞速发展,将涌现出大量以弱膨胀性泥岩为地基的高速铁路工程。由于高速铁路无砟轨道对路基变形要求极为严格,而弱膨胀性泥岩地基引起的高速铁路路基上拱研究鲜有报道,通过人工浸水方式在兰新高速铁路的路基上拱地段开展不同上覆荷载下弱膨胀性地基泥岩现场原位浸水试验,分别研究0、15、30、45 kPa 4种上覆荷载下泥岩横向渗透速率及竖向膨胀量。试验研究结果表明:泥岩浸水时横向体积含水率表现为稳定、骤增、减速增长和渗流稳定四个阶段;同一横向位置处,下部土体渗透稳定含水率大于上部土体;膨胀量随浸水量呈"S"型变化,且上覆荷载较大时会出现下沉现象;横向渗透速率随上覆荷载增加而减小,且横向渗透速率与横向渗透距离为非线性关系;提出以横向相对渗透衰减率100%作为控制标准确定高速铁路路基上拱临界荷载的设计思路。  相似文献   

4.
襄阳地区广泛分布膨胀土,既有铁路汉丹线多处地段因膨胀土变形造成路基翻浆冒泥、路基鼓胀下陷、边坡开裂失稳等病害。以襄阳地区某在建无砟轨道高速铁路工程为例,研究分析膨胀土地基膨胀变形对不同断面形式路基的工程影响,根据《膨胀土地区建筑技术规范》(GB50112—2013),采用大气影响深度法,在50 k Pa荷载条件下,试验得出有荷膨胀率并预测地基膨胀变形量。对不同挖深、不同断面形式的膨胀土路堑,研究其地基土最大膨胀变形量并有针对性地提出地基加固处理措施;结合地下水发育特征,给出膨胀土地基的防水保湿措施建议。  相似文献   

5.
对云桂(昆明—南宁)铁路南宁—百色段的膨胀土进行了浸水和不浸水条件下的原位水平推剪试验,中~强、弱~中膨胀土的原位侧向膨胀力试验,挡墙后是否设置减胀层的室内侧向膨胀力模型试验。结果表明:膨胀土浸水对其黏聚力的变化产生较大影响,而对其内摩擦角的影响相对较小。得到了膨胀土膨胀力与含水率关系经验公式和不同支挡结构下的减胀效果。  相似文献   

6.
对于铁路、公路的膨胀土地段路基,经常会遇到地基沉降理论计算值远大于实测值,进而使得处理措施过于保守的情况。本文以云桂线膨胀土地段路基DK619+430断面为例,通过取原状土试样开展K0固结试验、现场沉降观测和理论计算,对膨胀土的超固结特性及其对地基沉降计算的影响、路基临界填高等进行了分析。结果表明:云桂线弥勒膨胀土地基15 m深度范围内具有明显的超固结性,超固结比为4.10~1.08,且沿地基深度方向呈衰减变化;弥勒膨胀土地基6 m深度处(0~6 m范围的地基附加应力最大)由超固结状态开始进入正常固结状态的路基临界填高为7.2 m,填高小于该值时地基沉降量很小;考虑超固结性的膨胀土地基沉降计算值与实测值很接近,远小于不考虑超固结性的沉降计算值。膨胀土地基沉降计算应考虑超固结因素,避免膨胀土地基处理措施过于保守,节约投资。  相似文献   

7.
以蒙华重载铁路改良膨胀土路基试验段为依托,针对水泥改良土路堤、石灰改良土路堑两种形式路基开展不同轴重、不同干湿状态下现场激振试验,分析动应力、动加速度分布特征及振动累积变形发展规律;通过室内动三轴开展素膨胀土、水泥改良土、石灰改良土分别在4个不同含水率和4种不同应力水平下动力湿化变形试验,研究湿化幅度、动应力幅值对膨胀土及改良土累积应变特性的影响规律。研究结果表明,动应力和动加速在基床底部衰减率可达80%,且路基刚度越大,动应力、加速度沿路基深度衰减越快;同一深度下动力响应浸水状态大于干燥状态,且轴重越大,影响更为显著,湿化作用显著削弱路基对动应力与动加速度的衰减能力,水泥改良土抗浸水能力相对石灰改良土更强;路基面累积变形在浸水后随轴重和振动次数增加而增加,且在相同振次情况下,素膨胀土及其改良土累积应变均在湿化幅度超过2%后急剧增加,且动应力越大,应变增长速率越快,改良土累积变形速度仅为素膨胀土的1/8~1/5,石灰与水泥改良后均可有效抑制膨胀土的湿化变形;基于动三轴试验数据,建立累积应变的预估模型,得出素膨胀土及改良土模型参数与湿化幅度之间的经验关系。  相似文献   

8.
石武铁路客运专线是国家铁路网规划的"四纵四横"铁路主干线,速度快、质量标准高,尤其路基施工要求工后沉降量不超过15 mm,这对膨胀土路基施工提出了更高要求。针对石武铁路客运专线膨胀土路基施工高标准、严要求的特点,详细论述CMA生态改性剂改性原理、施工方法、质量控制要点,通过对CMA改性剂喷洒次数和喷洒量改良膨胀土的试验分析,确定适用于铁路客运专线膨胀土路基施工工艺、质量控制方法,对指导同类工程施工具有积极的借鉴意义。  相似文献   

9.
高速铁路建设的迅速发展及高速铁路对路基沉降的严格要求,CFG桩在高速铁路路基的处理上得到大量运用。由于基础存在着刚性的和柔性的两种不同的形式,通过对比刚性载荷试验与柔性载荷试验的结果,提出一种适合柔性荷载条件下的CFG桩复合地基的检测方法。  相似文献   

10.
以兰新铁路第二双线一处典型原状膨胀土为研究对象,进行厚度为2 cm的原状膨胀土在不同荷载条件下的分级浸水膨胀变形试验,以研究含水率和上覆荷载对原状膨胀土膨胀量的影响。试验结果表明:原状膨胀土的膨胀时程曲线呈阶梯型增长,且在某一含水率下的膨胀量随时间变化呈现出直线剧烈膨胀阶段、外凸弧线减速阶段和直线缓慢膨胀阶段;上覆荷载对膨胀量起抑制作用,上覆荷载越大,膨胀土的膨胀量越小,上覆荷载越小,膨胀土的膨胀量越大,且膨胀土最终达到膨胀稳定时的饱和含水率随上覆荷载的增大在逐渐减小;在上覆荷载一定的情况下,含水率和原状膨胀土的膨胀量呈良好的对数关系,再依据不同上覆荷载对公式参数进行拟合,建立了含水率和上覆荷载耦合作用下原状膨胀土膨胀量计算模型,模型计算结果与实测数据吻合较好。  相似文献   

11.
以兰新高铁一处典型原状膨胀土为对象,通过对膨胀土进行初始含水率为6%,厚度分别为2、4、6 cm及0、10、20、30、40、50 kPa不同上覆荷载下膨胀量试验,以研究厚度和上覆荷载对原状膨胀土膨胀量的影响。试验结果表明:随着上覆荷载的增大,膨胀量逐渐减小,因而膨胀土地基的膨胀变形主要发生在浅层膨胀土;原状土膨胀量随着厚度的增加而增加,且为非线性关系;对试验结果进行拟合,得到膨胀量随上覆荷载及厚度变化关系拟合关系式,为今后膨胀土地区工程建设提供理论支撑。  相似文献   

12.
水泥土挤密桩复合地基桩土应力比的现场测试研究   总被引:3,自引:0,他引:3  
桩土应力比n是复合地基设计中的重要参数.本文依托郑(郑州)西(西安)客运专线工程进行水泥土挤密桩复合地基桩、土应力的现场测试,得到桩土应力比n在路堤填筑过程中的变化规律.在刚性荷载板下的单桩复合静载试验测得,加载过程中n值变化快,且存在明显的峰值;而在路堤荷载下,n值变化较缓慢,量值比载荷试验的结果小得多,且变化范围不大,最终趋于一个稳定值.n取值范围为1.77~3.55,平均值为2.66.分析在路堤填筑过程中复合地基桩、土工作性状,进一步说明刚柔基础复合地基承载特性的差异,为铁路工程的设计施工提供合理的桩土应力比取值范围.  相似文献   

13.
武广客运专线路基沉降监测系统与沉降预测   总被引:4,自引:1,他引:3  
研究目的:目前对路基沉降理论尤其是柔性荷载下复合地基的沉降机理研究的十分有限,常规的理论计算结果与实际情况存在较大差异.以武广客运专线典型路基断面为例,采用CFG桩复合地基处理方法,对路基沉降变形进行监测,结合实测沉降曲线对沉降规律进行探索,并利用曲线拟合法对路基沉降进行预测,通过研究与分析,了解和掌握柔性荷载下CFG桩复合地基的沉降特性,为工程建设提供借鉴.研究结论:通过对武广客运专线典型路基沉降变形监测的研究,和利用曲线拟合法对路基沉降进行的预测得出以下结论:路基中心总的沉降量大于左右路肩沉降,路基中心总沉降曲线与左右路肩沉降曲线斜率变化基本一致;沉降量最大值不是路基中心,而是距中心大约1~2 m处.双曲线拟合法与指数曲线拟合法预测结果偏大,三点法预测结果偏小,Asaoka法介于两者之间,对观测时间没有特殊要求,其预测值较为准确.采用CFG桩复合地基处理方法能很好的控制沉降.  相似文献   

14.
铁路柔性基础下CFG桩复合地基承载力确定方法研究   总被引:2,自引:1,他引:1  
针对铁路CFG桩复合地基上的铁路路堤为柔性基础的实际情况,运用数值分析和现场载荷试验,研究铁路柔性基础下CFG桩复合地基承载力的确定方法。数值分析和现场载荷试验均表明,柔性基础下CFG桩复合地基中桩及桩间土的沉降和受力规律与刚性基础差别较大,桩的荷载分担比差别也较大,故目前采用刚性基础的方法确定铁路柔性基础下的CFG桩复合地基承载力是不合适的,而柔性载荷试验可以更好地反映铁路柔性基础下CFG桩复合地基的实际受力情况。因此,建议采用柔性载荷试验确定铁路柔性基础下的CFG桩复合地基承载力。  相似文献   

15.
沉降控制是湿陷性黄土区高速铁路建设中的技术难题.本文以郑西客运专线湿陷性黄土路基试验工程为依托,通过开展沉降变形观测、大型浸水试验、路基沉降预测,对高速铁路技术条件下水泥土挤密桩地基的沉降变形特性、湿陷性消除效果、沉降控制效果等进行了研究.研究结论:挤密桩最大处理深度一般不超过15 m.本试验场地采用15 m挤密桩处理,恒载预压6个月路基的剩余沉降量便已满足铺设无砟轨道对路基工后沉降的控制要求,浸水后该地基加固层仅出现了极少量的沉降,加固层的黄土湿陷性已完全消除.在湿陷性黄土厚度小于15 m的场地,采用挤密桩处理地基是一种有效的沉降控制方法.  相似文献   

16.
高铁无砟轨道对膨胀变形值要求极为严格,地基的胀缩变形不仅对行车安全性和舒适性产生威胁,而且严重影响高速铁路线路的服役状态和使用寿命。膨胀土地基均为原状膨胀土,为研究原状膨胀土的膨胀规律,以兰新铁路第二双线一处典型原状膨胀土为对象,对3种不同厚度的膨胀土分别进行不同上覆荷载和不同含水率下的膨胀变形试验。研究结果表明:膨胀土的厚度越大,其膨胀量越大;上覆荷载对膨胀量起抑制作用,荷载越大膨胀量越小,荷载越小膨胀量越大;土样的膨胀量随含水率的增加可分为缓慢增长阶段、急速增长阶段和缓慢增长阶段;在厚度一定时,建立含水率增量与上覆荷载耦合情况下原状膨胀土膨胀量计算模型,再依据不同厚度对公式参数进行拟合。建立含水率、上覆荷载和厚度3因素耦合作用下原状膨胀土膨胀量计算模型,模型计算结果与实测数据吻合较好,为今后膨胀土地区高速铁路的修建提供一定的理论支撑。  相似文献   

17.
实际工程中地基泥岩当有地表水及地下水渗入时,将引起土体膨胀变形。本文以兰新高铁新疆段典型膨胀地段泥岩为研究对象,进行了单向顶部和单向底部不同浸水方式下土体膨胀变形试验,通过在土样不同深度处埋设湿度传感器测定含水量变化情况。试验结果表明:顶部和底部不同浸水方式下土体膨胀变形量随时间变化规律不同,顶部浸水时膨胀变形速度初期快,随后减慢并趋于稳定;底部浸水时膨胀变形初期缓慢,随后加速,后期减慢并趋于稳定。不同浸水方式下泥岩不同深度处含水量时程曲线变化规律相似,本文使用平均渗透系数量化不同深度范围内土体渗透性变化规律,顶部浸水时平均渗透系数随深度增加呈减小趋势;底部浸水时平均渗透系数随深度减小呈减小趋势。研究结果可为实际工程中不同浸水方式下土体膨胀变形和渗透变化分析提供理论支撑。  相似文献   

18.
客运专线铁路路基沉降控制的若干问题   总被引:3,自引:2,他引:1  
研究目的:客运专线路基工后沉降控制标准高,目前的地基处理理论与设计方法主要是针对传统的软弱土地基,并不完全适合客运专线路基工后沉降的设计计算与地基加固处理,本文对遇到的若干问题进行分析探讨,提出可采用的方法.研究结论:通过对确定压缩层厚度各种方法优缺点的分析,给出了压缩层厚度计算方法;在分析轨道、列车以及运架梁车等荷载特点的基础上,通过对路基稳定、沉降变形的控制因素分析,对轨道、列车与运架梁车荷载在稳定、沉降计算中的考虑方式与简化形式提出了建议;通过对各种基础形式的荷载传递特性、复合地基的形成条件等内容的研究,提出客运专线路基沉降控制分析应根据路堤基底垫层形式、加固桩的类型,采用复合地基或复合桩基理论进行.  相似文献   

19.
胶济客运专线非饱和土地基沉降现场试验研究   总被引:1,自引:0,他引:1  
地基沉降的计算值与实际沉降往往有较大的差异,特别是对深厚非饱和土地基的沉降理论计算还不完善,因而对其进行现场试验研究就显得越发重要.通过对路基填筑过程中和放置期的地基沉降进行实时监测,获得地基的荷载-沉降-时间关系及分层沉降,掌握此类地基土的变形过程和趋势,预估工后沉降量,为今后工程设计提供参考,为非饱和土沉降理论计算提供试验依据.  相似文献   

20.
客运专线的建设需要高度平顺和稳定的轨下基础,控制变形是客运专线路基设计的关键.在保证路基本体施工可靠性的前提下,客运专线的沉降变形主要由地基沉降确定.地基沉降的计算方法有很多种,相关理论计算方法主要区别在于计算土体的应力-应变关系不同,即压缩性指标不同,而压缩性指标主要指土体模量.针对常规计算统一选定室内试验100~200 kPa应力间变形所得出的压缩模量,其前提明显偏离实际情况,相对来说,具有其不舍理之处.通过对比分析室内土工试验及现场原位试验,最终建议采用室内固结试验拟合结论进行沉降计算.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号