首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究寒区铁路路基水热动态过程,以北麓河地区路基试验段道砟覆盖路面、无道砟路面(砂砾路面)和天然场地的水分、温度、热通量和降水等数据为基础,分析铁路路基活动层水热宏观迁移规律、活动层水分累积情况及降水对路基热状况的影响。结果表明:路基活动层各深度地温随时间呈正弦规律变化,道砟层能够有效减少外部热量进入路基,道砟路面年平均地温和年较差明显低于砂砾路面;融化期间路基液态水和降水向下运移,冻结过程中水分向冻结锋面运移;夏季强降雨和持续降雨对浅层路基(高度75cm)短期水热有明显影响,但路基长期水热受降雨影响不明显,也未出现明显水分累积;降雨入渗、地表蒸发伴随的液态水和水汽运移对铁路路基表层水热影响不可忽略。  相似文献   

2.
在青藏铁路北麓河试验段设置试验断面,对地温及热流量进行观测,研究青藏铁路道砟层对路基下伏冻土热状况的影响.研究分析表明:道砟层在暖季阻止外部热量进入下伏冻土,冷季阻止路基内部热量扩散,且道砟层在暖季保温效果明显,而在冷季其降温效果并不明显;相同深度处道砟层下土体的年平均温度比砂砾路面下土体的年平均温度约低2℃;道砟层对路基下伏冻土起降温效果主要是因为其在暖季屏蔽了大部分外界热量,促使道砟层下土体年总热量收支呈现负值,从而起到很好的降温效果.因此,铺设道砟层有利于冻土路基的热稳定性.  相似文献   

3.
结合青藏铁路风积沙填堵块石路基特征,利用降雨观测数据,采用数值模拟计算分析降雨条件下风积沙与块石混合层的水热响应特征。结果表明:在年平均气温较高区域,降雨能够抬升冻土上限和降低冻土温度。风沙填堵块石层后,总等效体积含水量在浅表层降低,在冻土上限附近即深度-3.0~-2.0 m处呈增加趋势。同时夏季液态水体积含量和冬季体积含冰量增大,风积沙块石层下部冻土存在水分累积。天然土层下部水分含量变化小,受降雨影响不大。风沙填堵块石层后其下部土层的水分累积,会引起冷暖季节的冻胀融沉,应加强防排水设计措施,防止因路基坡脚积水造成侧向入渗。  相似文献   

4.
运用ABAQUS有限元软件建立有砟轨道—路基系统三维动态有限元模型,分析高速和重载列车荷载作用下的路基空间动应力、路基面横纵向动变形和剪应变特性。基于现场条件,选择砟脚内30cm和砟脚处作为路肩横向和纵向的动变形分析参考点,研究动变形引起的路肩倾斜角度随列车速度、道砟厚度、表层厚度和表层模量变化的规律。结果表明,路肩横向和纵向倾斜角随车速增大而增大,随道砟厚度、基床表层厚度和表层模量的增大而减小,基床表层和底层的最大剪应变较为接近,最大剪应变与路肩最大倾角大致呈线性关系。  相似文献   

5.
为了研究胶粘道砟过渡段动力学特性,基于SIMPACK和ANSYS联合仿真,建立将无砟轨道、胶粘道砟、有砟轨道三种不同轨道结构连接起来的完整过渡区段,组成车辆-轨道下部基础空间耦合分析模型,对胶粘道砟过渡段的动力学特性进行系统研究,并探讨速度的影响。结果表明:胶粘道砟过渡段能够使轨道刚度平顺过渡,但列车从无砟轨道运行到胶粘道砟过渡段时加速度仍会剧烈变化,所以建议在靠近胶粘道砟过渡段的无砟轨道采用具有一定减振作用的扣件。  相似文献   

6.
通过对板结道砟断裂的形态分析和力学分析,阐明板结道砟断裂时中间、径向裂纹及侧向裂纹长度与凿入荷栽的关系.基于以上理论分析,结合BC2型扒砟车的破碎装置,对冲击荷载作用下道砟板结块断裂情况进行实例分析,对破碎深度、轨枕之间设计间距进行了计算,并分析了钎杆刺板对板结道砟破碎效果的影响.此外,通过对破碎前后板结块强度对比,研究破碎对板结道砟在扒砟过程中产生的扒砟阻力降低程度的影响,目的是通过理论分析得出处理类似问题的理论研究方法.  相似文献   

7.
青藏铁路多年冻土区普通路基地温监测及其预测分析   总被引:1,自引:0,他引:1  
青藏铁路多年冻土区局部地段以普通路基形式通过,其稳定性与铁路的正常运营密切相关。2002~2003年在北麓河布置了普通路基试验段,用于监测路基的温度状态。基于监测资料,分析路基边坡温度变化过程、路基及下部土体温度场分布以及进入多年冻土的热流量。结果表明,阳坡面年平均温度比阴坡面高2.9℃,阴坡面温度年较差比阳坡面大2.2℃。受地表温度边界条件控制,路基阳坡下土体融化深度明显大于阴坡,且路基下部土体处于升温状态。路基下部土体不同部位主要表现为吸热强度逐年略有减小的吸热状态。模拟计算50年气温升高1℃条件下路基温度场,结果表明50年后路基冻土上限下降明显,并且冻土温度主要介于0~-0.5℃之间。  相似文献   

8.
为了研究陡坡路基桩板结构动荷载作用的响应规律,利用ABAQUS有限元分析软件进行数值模拟,对杭黄客专某桥隧间陡坡短路基道砟与填料的动应力传递、加速度、动应力时程对比及板结构应力分布等进行研究。数值模拟结果表明:道砟层表面的最大加速度幅值约为1. 8 m/s~2,较填料的最大幅值(约1. 3 m/s~2)高出约27. 7%;填料处的最大动应力(37 kPa)远小于道砟上的最大动应力(74kPa),约为道砟层最大应力的一半;板上最大正应力约为70 kPa;最大负向应力约为181. 5 kPa。研究表明:道砟层对于动加速度的衰减作用和动应力的消散作用较为明显;板上应力最大位置位于桩顶处,最大正应力的位置为左排与中排桩桩顶处,最大负向应力的位置为右排桩桩顶处。  相似文献   

9.
宁安铁路安庆长江大桥主桥连续钢桁梁斜拉桥全长1 364.6 m,铁路4线,有砟桥面。道砟槽由底板、挡砟墙、防水层和耐磨层4部分组成,宽度9.5 m,底板和挡砟墙为钢筋混凝土结构。底板厚15 cm,纵向通长设置,通过剪力钉和钢桥面板结合成整体。挡砟墙高1.05 m,纵向设温度断缝。与道砟接触的耐磨层纤维混凝土厚6 cm,纵横向设有锯缝。耐磨层和底板之间采用聚氨酯卷材做防水层。道砟槽在4—7月期间施工,按底板→挡砟墙→防水层→耐磨层的顺序进行,分幅分段完成。对于主跨跨中道砟槽中线点位置,按照从两端钢梁分别联测至跨中处两者坐标差的分中值位置进行确定,挡砟墙高度均随钢梁面起算。采取底板预留后浇段,底板和耐磨层在夏季升温时间段浇筑、3~4次收浆抹面工艺等技术措施,实现长联薄底板全长无裂纹,耐磨层开裂少。采用端模包侧模的抽钎脱模法成形挡砟墙断缝。长联薄板结构道砟槽防开裂施工技术可为类似工程提供借鉴。  相似文献   

10.
研究目的:下部基础中桥梁、路基和路桥过渡段对高速铁路无砟轨道结构性能有着重要的影响,因此分析不同下部基础对CRTSⅡ型板式无砟轨道内温度场分布的影响尤为关键。本文基于无砟轨道现场的半年温度监测数据,对比分析简支箱梁、路基和路桥过渡段三种基础上CRTSⅡ型板式无砟轨道内温度和温度梯度变化特征。研究结论:(1)半年内过渡段上无砟轨道内温度的非高斯性和非平稳性更显著,路基上非高斯性最差;四个特殊温度日,最高温度日的轨道内温度变化幅值最显著,而最大温差日的轨道内温度梯度变化幅值最大;(2)对于不同下部基础,过渡段轨道的温度变化和温度梯度变化最显著,其次是路基和桥上轨道的温度变化;(3)不同基础上轨道板的温度、路基土体的温度与环境温度呈明显的非线性关系,二次多项式拟合函数可表征轨道板内温度与环境温度的关系;桥上轨道的拟合优度R2为0.803,高于过渡段(0.752)和路基(0.635)上的;(4)本文研究可为高速铁路无砟轨道长期服役性能评估提供重要的温度实测数据。  相似文献   

11.
目前现行规范对层状体系的铁路路基基床结构的应力应变计算采用等效厚度法,按Boussinesq公式进行计算,等效厚度法采用Odemark模量与厚度当量假定,将路基上不同模量的厚度土层折算成与路基下部填料同模量的等效层厚,该方法并没有很好反映不同土层材料性质之间的差异,对高模量的道砟层、基床表层、基床底层在路基应力场分布中的作用,缺乏严密的理论依据。针对重载铁路路基4层结构体系,采用基于传递矩阵的层状理论分析方法针对其不同深度处的应力变形求解。通过均质土层的计算结果与Boussinesq公式的理论结果的比较,验证了传递矩阵法及其计算程序可行性,最后为了进一步说明该方法的合理性,对比有限元和传递矩阵法的计算结果,结果表明,二者吻合较好。  相似文献   

12.
弹性轨枕已被应用于国内外多条有砟轨道线路,铺设于路基、桥涵地段以减小道砟受力。为探明隧道内有砟轨道铺设弹性轨枕的适用性及其减振性能,基于动力学理论与有限元法,建立车辆-有砟轨道-隧道空间耦合动力学模型,分析弹性轨枕对车辆、轨道以及隧道动力响应的影响,并对枕下垫层合理刚度进行探讨。结果表明:弹性轨枕能保证隧道内行车的安全性和平稳性,车辆动力学指标变化不大;枕下垫层会导致钢轨、轨枕垂向位移显著增加,但可大幅降低有砟道床动态响应;相比普通有砟轨道,弹性轨枕具有很好的减振效果,隧道壁振动最大减小17dB,发生于80Hz中心频率处;从控制轨道振动和位移、保证减振效果的角度考虑,建议枕下垫层刚度取40~60kN/mm。  相似文献   

13.
青藏铁路冻土路基热棒应用效果试验研究   总被引:4,自引:0,他引:4  
通过青藏铁路沿线典型冻土路段热棒试验路基和对比路基的地温及变形现场监测,研究热棒对多年冻土路基的保护效果。通过对埋置在正线试验路基左侧不同规格热棒周围地温的监测,研究热棒构造对路基降温效果的影响。试验结果表明,热棒显著抬升路基下部多年冻土的天然上限,其最大平均抬升值达1.66 m;斜插方式埋置热棒能使最大融化深度曲线更快地趋于平缓,达到对路基下部多年冻土的整体保护;热棒路基的累计变形远小于未设置热棒的对比路基;热棒的产冷功率越大,其降温效果越好,降温范围也越大。  相似文献   

14.
高速铁路板式无砟轨道-路基结构动力特性研究   总被引:6,自引:0,他引:6  
马学宁  梁波  高峰 《铁道学报》2011,33(2):72-78
针对列车走行的实际情况,将板式无砟轨道-路基作为参振子结构纳入车辆计算模型,建立包含车辆、钢轨、板式轨道和路基为一体的二系垂向耦合动力分析模型,分析列车速度对车辆运行品质、系统动位移以及动应力的影响。结果表明:车体加速度、动轮载和轮重减载率均随车速的提高而增大,呈线性分布,当列车高速通过无砟轨道-路基结构时,列车运行的安全性和舒适度指标都能满足要求;系统动位移受速度影响较小;轨道板易发生疲劳破坏,需采用双层、双向配筋;路基面动应力随速度的提高而增大,但数值比有砟轨道的小;路基动应力沿路基深度方向衰减较慢,在基床表面下3 m处,动应力只有基面的25%左右;无砟轨道的基床加速度远小于有砟轨道的加速度值,表明无砟轨道结构可以有效地改善列车荷载对路基基床的振动作用。  相似文献   

15.
研究路基及周围土体温度的分布规律是分析季节性冻土地区路基稳定性的重要基础,结合哈齐客专DK221+150断面3 a的现场监测数据,分析了天然地表及路基不同位置的地温分布规律;建立温度场的仿真模型,研究温度沿深度方向的变化规律;利用实测数据验证模型,分析保温护道高度对路基温度场的影响。现场监测和模拟计算结果表明:护道对路基的边坡下部和坡脚处影响较大,能够有效减小冻深,但对路基中心的温度场影响不大。  相似文献   

16.
建立了含初始裂纹的CRTSⅠ型双块式无砟轨道空间有限元实体模型,对无砟轨道的受力特性进行研究,为无砟轨道的优化设计及其养护维修提供一定的理论基础。综合考虑列车荷载和温度应力的共同作用,求出了裂纹张开量和道床板纵向钢筋应力,并分析了裂纹深度和道床板配筋率对裂纹张开量和道床板纵向钢筋应力的影响。得出结论:(1)在列车荷载和整体温降共同作用下,无砟轨道道床板裂纹深度对裂纹张开量和裂纹处道床板下层纵向钢筋应力的影响不明显;(2)在满足最小配筋率的前提下,道床板配筋率对无砟轨道道床板裂纹张开量没有影响;在列车荷载和整体温降共同作用下,道床板配筋率对裂纹处道床板下层纵向钢筋应力的影响也不明显。  相似文献   

17.
降雨或地下水波动会影响列车荷载作用下铁路路基的力学与变形响应,特别是膨胀土路基.为此,以泥质砂岩混合土为膨胀性地基,A组填料为基床,建立1:2大比例高速铁路无砟轨道路基物理模型试验,通过对路基浸水分析加卸载循环作用下路基土压力与变形分布规律.试验结果表明,浸水对铁路膨胀土路基具有明显影响,基床表层底面处土压力呈明显非均...  相似文献   

18.
哈大高速铁路路基冻胀规律及影响因素分析   总被引:1,自引:0,他引:1  
根据哈大高速铁路路基冻胀的测量和普查结果,进行系统分析和对比,提出严寒地区无砟轨道路基冻胀的特点和基本规律,分析路基冻胀的水分、温度及细颗粒含量等影响因素,从结构设计角度提出预防和减弱冻胀的设计优化建议,对严寒地区无砟轨道路基冻胀处理及结构优化设计具有重要的指导意义。  相似文献   

19.
研究目的:为了研究米轨混凝土枕和钢枕横向阻力分担情况,本文采用离散元法分别建立米轨混凝土枕和钢枕有砟道床模型,并通过单根轨枕横向阻力试验验证离散元模型的正确性,进一步研究米轨混凝土枕、钢枕横向阻力分担比例。同时在离散元模型不同部位建立测量圆监测道砟孔隙率,探究轨枕横向移动过程中不同部位道砟密实度变化规律。研究结论:(1)米轨混凝土枕枕端和枕底提供了约79%的道床横向阻力,与道砟颗粒接触面大的轨枕侧面道床阻力占比较小,可以采用密实和部分胶结等方式使枕心道砟充分参与作用;(2)米轨钢枕枕端提供了约60%的道床横向阻力,枕底提供了约30%的道床横向阻力;(3)米轨混凝土枕道床横向阻力主要来源于轨枕与底部道砟颗粒的摩擦作用和砟肩道砟的压力作用,而米轨钢枕道床横向阻力主要来源于枕腔内部道砟的挤压摩擦作用和砟肩部位道砟的压力作用;(4)本文结论可为米轨无缝线路的设计和养护维修提供参考和借鉴。  相似文献   

20.
客运专线无砟轨道桩网结构模型试验研究   总被引:7,自引:1,他引:7  
无砟轨道线路状态的调整只能通过扣件系统进行,其对轨下的基础沉降、差异沉降及弯折变形提出严格要求。为了研究在经过桩网结构地基加固后的土质路基上修建的无砟轨道是否满足要求,在室内进行了桩网结构大比例模型试验研究,测试在填筑和循环载荷试验情况下的路基沉降、基床动应力、桩顶与桩间土土压力,以及桩的应力应变分布等数据。研究表明:①桩网结构累积沉降值较小,能满足无砟轨道对工后沉降25.0 mm的要求;②桩网结构中的网具有荷载分担作用,桩起竖向增强作用,桩土应力比约为2.45;③桩的承载力由桩侧摩阻力与桩端支承力共同贡献,当地基中存在软土层时,桩侧有产生负摩阻力的趋势,中性点位于软土层下部交界面处。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号