首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
高速列车车端减振装置的研制   总被引:1,自引:0,他引:1  
车端阻尼可以有效地衰减车辆的摇头和侧滚振动,改善高速列车的横向平稳性.由于相邻车端的纵向和横向位移较大,直接加装车间阻尼器有很大难度,需要设计合理的杠杆机构以减小阻尼器的行程和节点偏转角度.现介绍了这种新型车端减振装置的研制过程,并对该装置的作用效果进行了试验对比.  相似文献   

2.
本文提出计算整备状态下高速列车车体垂向一阶弯曲模态频率的数值及解析方法,研究并阐释车下设备对整备状态下车体模态频率的影响机理。基于解析方法及隔振理论,提出车下设备与车体模态匹配原则,设计车下设备悬挂参数,并针对设计结果进行试验验证。结果表明,数值方法计算精度高,但不便于工程运用,而解析方法在保证计算精度的同时,能够直接运用于车下设备悬挂设计;相对于刚性吊挂而言,车下设备采用弹性吊挂时,整备状态车体的垂向一阶弯曲模态频率会得到明显提升;车体与车下设备模态频率的合理匹配可有效避免二者间共振的发生,针对所研究的高速车辆,当独立设备固有频率设计为6.5Hz时,设备自振频率能够与车体垂向一阶弯曲模态频率有效分开。在整个运行速度区间内,车辆可以获得良好的运行平稳性,同时车下设备振动亦不剧烈。  相似文献   

3.
以高速列车变压器为例,基于隔振理论与车下设备振动特性,提出了变压器减振设计方案,并进行减振效率分析。通过振动测试试验,对变压器减振效果进行验证,结果表明当变压器独立悬挂频率设计为9 Hz时,变压器振动频率可以有效避开车体的模态频率,且振动衰减效果明显。  相似文献   

4.
通过建立极坐标下热应力平衡方程,求解得到制动盘热应力表达式;采用有限元分析法对初速度为270 km/h的高速列车合金锻钢制动盘紧急制动工况后的残余应力进行数值模拟分析。结果表明,较大的残余拉应力分布在摩擦面上,随厚度方向逐渐减小,最大残余应力值542 MPa,且在摩擦环内应力分布并不均匀。用X射线应力测定仪对制动盘摩擦环的残余应力进行测定,试验测得最大残余应力值为348.4 MPa。仿真结果和试验结果相差35.7%,结果虽相差较大,但变化趋势基本一致,且合乎实际。理论仿真结果能直接用于制动盘疲劳裂纹扩展评定和寿命预测。  相似文献   

5.
高速列车在运行时,列车与空气的相互作用十分强烈。在实际的车辆开发研究过程中,随着列车的提速,如何有效地利用空气动力学特性变得愈来愈重要[1]。本文创建了350km/h高速列车编组明线运行的三维计算模型,并建立了头车车下设备舱内部流场的计算模型。对列车在环境温度为40℃~-40℃下,设备舱内的温度分布情况进行了数值研究,获得发热设备表面温度随不同环境温度的变化规律,为车下设备的合理布局提供依据。  相似文献   

6.
介绍高速列车受电弓导流罩的结构形式和作用,研究受电弓导流罩受力工况,并进行仿真计算分析和试验验证。通过仿真计算确定设计方案,通过试验验证,证明受电弓导流罩满足高速列车的运用要求。  相似文献   

7.
为研究在极端工况的因素影响下乘坐高速列车中旅客的心理状况反应,利用网上问卷和本地调研,并结合专家咨询的方式采集数据,通过对反馈数据进行各种角度的统计分析,总结出极端工况下高速列车中旅客可能发生的一些心理状况反应,为后续设计极端工况下的旅客心理疏导预案提供依据。  相似文献   

8.
通过三维大涡模拟(LES)数值计算方法,对横风中不同行使工况下高速列车的非定常空气动力特性进行研究。计算得到各工况下高速列车车体所受非定常空气动力的时域特性、频域特性、脉动特性,以及列车周围非定常流动结构。分析结果表明,横风中高速列车所受空气动力存在明显的非定常性。从各工况高速列车所受空气动力脉动的均方根值来看,各节车的非定常现象基本随着合成风向角的增加而增大。在高速列车所受非定常空气动力的频域特性方面,其峰值频率集中在斯托劳哈尔数0.05~0.2范围内,这一范围对应实车情况的频率为0.5 Hz~2 Hz,这与高速列车系统本身存在的一些固有振动频率接近,存在由横风引起高速列车系统共振、降低高速列车行驶安全性乃至引发高速列车脱轨倾覆的可能性。  相似文献   

9.
准高速列车表面压力分布测量实车试验研究   总被引:6,自引:1,他引:5  
介绍了一种采用拍式感压片而无需在列车表面开测压孔的新的实车表面压力测量方法,并对试验中比较压的选取进行了详细分析.2次实车试验得出的准高速列车表面压力分布规律一致,其结果对检验列车局部外形的合理性及空调设备进排风口位置的合理布置具有指导意义.  相似文献   

10.
根据隧道压力波传播和叠加理论的分析,分别在两条350km/h等级线路上进行了多个速度级的列车隧道通过和隧道交会的实车试验。结果表明:实车监测压力波特性与一维压力波传播与叠加理论分析相一致,两列列车的车外正压与正压和负压与负压均充分叠加;速度为300km/h时列车隧道交会最大压力变化比是隧道通过的1.98倍,隧道长度越接近最不利长度时压力波叠加更充分。  相似文献   

11.
准高速列车表面压力颁测量实车试验研究   总被引:2,自引:0,他引:2  
张斌  梁习锋 《铁道车辆》2000,38(10):14-16
介绍了一种采用拍式感压片而无需在列车表面开测压孔的新的实车表面压力测量方法,并对试验中比较压的选取进行了详细分析。2次实车试验得出的准高速列车表面压力分布规律一致,其结果对检验列车局部外形的合理性及空调调和进排风口位置的合理布置具有指导意义。  相似文献   

12.
采用皮托管流量测量法对高速列车牵引电机冷却风机流量进行了实车测量,结果表明:动力车作为头车,位于动力车后部的1、2号风机比位于前部的3、4号风机流量大,动力车作为尾车,1~4号风机流量相差不大;冷却风机风量随列车运行速度的提高而减小,前部风机比后部风机的变化幅值大。  相似文献   

13.
为识别高速列车运行典型工况,使用不同数量的特征参数构建特征框架。结果表明,随着特征参数数量的增加,识别率提高,当识别率提高到一定程度后,继续增加特征数量对识别率的提高影响力变小。因此,在实际动车组工况识别时,无需使用大量特征,可节省特征提取工作量。使用频带比单一频率更能准确反映动车组振动监测信号的振动特性。  相似文献   

14.
本文对列车测速仪通道监界动作距离不一致性及现场两传感器安装高度不起的速误差进行了分析,并通过现场试验结果说明这种分析的正确性。  相似文献   

15.
高速列车在上下坡时,如果速度变化过于剧烈,则会影响平均行车速度,同时会因频繁的加速和减速而造成运营费用的增加.列车的速度变化又与列车运行工况以及坡度和坡长有关.因此,分别在不同坡度上,对高速列车在不同运行工况下,速度变化与坡度和坡长的关系进行研究,对于高速铁路坡度和坡长的选取有着重要的意义.以CRH2-300和CRH3型电动车组为例,通过分析两种电动车组的牵引和制动性能,分别对两种电动车组在不同的坡度上,牵引、惰行、制动等不同的运行工况下,速度随坡长的变化情况进行了计算,从而为在综合考虑工程量和运营费用时,不同的地形条件下,高速铁路坡度和坡长的选取提供依据.  相似文献   

16.
通过引入欧拉连续支承梁模型,基于广义Duhamel公式推导了半无限空间连续体任一点的时频域动力响应函数。根据温克尔弹性基础梁假定得出了高速列车作用下轨枕受力数学表达式。采用有限差分软件FLAC 3D分析了隧道底部结构特定监测点的动力响应特征。经工程应用,基于该公式的数值模拟计算结果与工程现场实测结果变化规律一致,验证了该公式的准确性与适用性。  相似文献   

17.
高速列车车体下吊设备隔振设计及试验研究   总被引:2,自引:0,他引:2  
针对高速列车车体下吊挂设备振动问题进行研究,根据隔振理论和模态匹配原则确定各主要下吊设备的模态频率范围,设计了下吊设备隔振元件参数。试制产品后,测试车体及下吊设备的振动情况,并对测试结果进行了时域和频域的分析。分析结果表明,根据该下吊设备隔振悬挂参数设计的车辆,在各速度级下都未与车体发生剧烈共振,设备和车体振动情况正常,这表明所采用的设计方法正确,隔振参数设置合理。  相似文献   

18.
文章以LabVIEW软件作为研究平台,完成了高速列车车下设备舱远程监测系统的研究和设计。系统数据采集使用LabVIEW FPGA数据采集模块,应力采集采用流程化配置,数据传输采用DMAFIFO方法,使得系统实现了车下设备舱关键受力部位数据的实时采集、实时显示、快速储存和离线回放等功能。  相似文献   

19.
首先建立了残余热应力的理论模型,实测得到了锻钢制动盘材料的多线性塑性随动强化数据,并采用弹塑性有限元法模拟了高速列车制动盘在不同制动工况下的热应力和残余应力分布。主要仿真了200km/h和300km/h速度级下的1次紧急制动、3次200km/h连续紧急制动及一次300km/h紧急制动对后续常用制动的影响。结果证明制动模式是影响残余热应力分布的主要因素,工况越恶劣,残余热应力值越大;紧急制动产生的残余热应力会提高后续常用制动下应力应变响应的峰值,但后续常用制动不会影响残余热应力的值,研究成果为制动盘损伤和裂纹扩展的研究提供参考。  相似文献   

20.
对我国铁路在1997年1月初在北京环行试验基地进行的200km/h及其以上的高速列车综合试验进行了分析述评。重点介绍机车车辆有关的试验情况。同时根据试验情况提出我国发展高速机车车辆存在的一些技术问题及建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号