首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
我国高速铁路采用CTCS-3级列车控制技术(简称C3),极大地提高了铁路运输能力.C3技术在保证高速列车运行安全的同时,存在最为突出的是无线超时问题.1 C3无线超时概述C3无线超时是指车载设备与RBC通信过程中,由于GSM-R网络、车载ATP或无线闭塞中心(RBC)等原因,引起车载与RBC通信异常中断,RBC无法对列车进行控制.  相似文献   

2.
基于GSM-R网络实现车地信息传输的CTCS-3级列控系统在国内取得快速发展,现场运用中发现,无线超时是影响CTCS-3级列控系统运用质量的一类主要问题。从无线超时的原因分类出发,结合目前在用的接口监测系统,以及新加装的Datalogger和Um接口监测设备,以一些典型问题为例,详细介绍无线超时问题的分析方法,对指导无线超时问题的分析解决,提高CTCS-3级列控系统的运用质量,具有重大现实意义。  相似文献   

3.
在日常CTCS-3(简称C3)无线超时分析工作中,由于既有监测手段不全,导致部分故障无法准确定位、分析,从而出现很多分析结论为原因不明的情况.为准确分析核心网(MSC)至基站(BTS)之间的帧逆序、帧跳变、单通等电路交换数据业务(Circuit Switched Data,CSD)链路异常造成的C3无线超时异常,需要启...  相似文献   

4.
利用CTCS-3级列控系统车地数据传输的既有监测系统,实现自动发现CTCS-3无线超时事件、自动收集超时事件相关数据、自动诊断分析无线超时事件,提升CTCS-3超时原因分析的准确性,将维护人员从传统的以人工为主的繁琐工作中解脱出来,为管理部门提供CTCS-3无线超时管理更便捷的支撑服务。  相似文献   

5.
CTCS-3无线超时故障是CTCS-3级列控系统的重点和难点问题,因SIM卡造成的超时问题一直没有找到具体的原因,重点对SIM卡的表面形貌分析(SEM)、成分分析(EDS)以及设备运用中SIM工作状态的研究,通过检测发现了SIM卡表面存在不导电颗粒物,在设备运用中造成电台不识卡,导致无线通信超时故障,并就该问题提出了对策措施。  相似文献   

6.
以某次无线连接超时故障为例,分析C3业务的跨局切换方式,研究跨局电路存在的问题,以及对列车的影响,提出分析处理建议。  相似文献   

7.
我国已经开通运营的300km/h及以上的高速铁路,大多采用CTCS-3级列车控制系统,在日常检测中经常发现降级问题。通过对动态检测发现的降级问题进行分析,总结出无线超时导致降级的原因,积累故障处理方法、经验,不断提高故障处理业务水平、数据分析水平,确保CTCS-3级列控系统的稳定运行和安全性。  相似文献   

8.
基于合福高铁GSM-R系统网络,分析目前CTCS-3线路无线优化的难点在于无线链路超时事件和十字交叉区域优化,结合实例对多径干扰问题和十字交叉区域问题进行探究,提出了相应的解决办法,并通过实践改善了网络指标。  相似文献   

9.
沪宁高速铁路是长江三角洲地区城际轨道交通网规划中的网络主轴之一,其设计速度为300 km/h,采用目前我国最先进的CTCS-3级列控系统(简称C3),C3列控数据利用GSM-R网络的无线通道进行车-地间的双向传输.为保证列车能在C3级别高速稳定地运行,并且当出现无线通信超时故障造成降级运行时,能快速地对故障进行分析和定位,因此对GSM-R网络各接口进行监测十分必要.接口监测系统是快速有效地进行无线通信超时故障分析和故障定位的监测分析工具,该系统首先采集GSM-R系统和C3间接口(lgsm-r,PRI)的数据及GSM-R网络内各接口的数据,并将采集到的数据解析存库,综合分析子系统再对各接口存储的数据进行统计汇总,生成无线通信超时故障分析所需的各种报表.  相似文献   

10.
地面无线闭塞中心(RBC)与列车无线通信超时故障是当前高速铁路运营中比较常见的一类故障,无线超时故障往往发生在RBC移交区,会导致列车由CTCS-3级降级到CTCS-2级,也会触发列车制动甚至停车。导致无线超时故障的原因复杂,很难定位故障源。车地通信通过无线报文进行传输,无线报文的交互信息过程能够反映无线传输系统实时工作状态,因此提出基于无线报文的无线超时故障分析方法。根据无线报文包号,利用MATLAB对车地通信在移交区正常与故障情况下的无线报文交互信息过程进行描绘并拟合成曲线,得到阈值曲线和故障曲线,此阈值曲线是故障判定的重要参考依据。该分析方法有助于定位故障源,提高移交区无线超时故障的排查率,并进行故障预判。  相似文献   

11.
"无线连接超时"是CTCS-3级列车控制系统中占比较大的故障现象,也是影响高速动车组运行效率的重要因素之一。以CTCS-3级列控系统无线通信工作原理为切入点,梳理无线连接超时分析方法,通过分析典型无线连接超时故障案例,对几种无线连接超时故障常见情况进行总结,并提出相应的处理方法及建议,在预防无线连接超时故障方面具有一定的指导意义。  相似文献   

12.
在我国新建时速350 km及以上高速铁路都采用以GSM-R网络(简称G网)为数据承载通道的CTCS-3控车方式(简称C3).G网在高速铁路中运用需要克服移动台高速移动、地形环境复杂、满足高QoS标准等诸多难题.C3对G网质量要求非常高,当车载电台与无线闭塞中心(RBC)通信异常时,将直接导致C3无线连接超时,造成列车制动或列控降级等后果.  相似文献   

13.
针对郑徐高铁开通初期出现的徐州东线路所RBC交接区附近和上海局与郑州局局界附近C3无线超时问题,结合郑徐高铁GSM-R无线覆盖方案、MSC与RBC管辖范围、车载电台记录和网络设备故障代码等,详细分析故障产生的原因,提出解决方案。鉴于问题隐蔽,且涉及通信、信号两系统,在工程建设、联调联试和试运行阶段均未被发现,总结提出工程设计、数据制作、联调联试和试运行方面的建议,供后续高速铁路GSM-R网络设计、调试及故障分析等参考。  相似文献   

14.
无线闭塞中心判断闭塞分区占用出清逻辑状态异常,导致以CTCS-3等级运行的紧追踪动车组发生无线连接超时故障。通过对该问题进行探究,提出了多种解决方案并进行了相应的论证,可为铁路运营管理部门和设计单位提供借鉴。  相似文献   

15.
阐述我国CTCS-3级列控系统运用中常见的无线链接超时问题,从CTCS-3级列控系统无线通信单元的设计、工作原理进行说明,对现场实际运用中发生的问题进行分析,并结合现场运用维护实际经验,详细说明此类问题的数据分析方法和应对措施。现场设备管理维护部门通过有效手段预防该问题的发生,提高CTCS-3级列控设备的运用可靠性。  相似文献   

16.
CTCS-3级列车运行控制系统(简称C3系统)是实时控制列车安全运行间隔、防止列车超速运行的高速铁路核心技术装备和安全关键系统,在实际运用中存在由于各种原因导致降级,影响列控系统整体安全稳定运用的问题。介绍C3系统组成、功能和技术特点,梳理运用中存在的主要问题,通过分析典型C3系统通信超时及降级运用案例,结合现场技术管理工作实际,提出有效提升C3系统运用质量的相关建议。  相似文献   

17.
无线连接超时是影响CTCS-3列控系统安全平稳工作的重要问题,CTCS-3通信接口监测系统是维护铁路移动通信系统GSM-R网络安全工作与稳定性的最主要措施。简要研究CTCS-3无线通信超时的问题,根据日常接口监测系统对无线通信超时问题进行数据分析,总结无线网络超时的原因过程。  相似文献   

18.
简述郑徐客专C3单电台交接及无线超时故障问题机理,总结单RBC跨多MSC场景数据制作及测试案例经验。在杭黄铁路工程中,通过分析杭黄铁路GSM-R系统设计方案和RBC管辖范围,得出RBC与MSC对应关系,提出MSC制作RBC和LAC邻区数据及联调联试测试案例建议并运用到工程实施过程中,避免类似故障的发生,为杭黄铁路顺利通过联调联试提供有力保障,单RBC跨多MSC数据制作及测试案例经验可供后续线路参考。  相似文献   

19.
高速铁路GSM-R网络基站直放站共同覆盖区的多径干扰问题是工程实施和网络优化中较为常见的通信掉话原因。研究GSM-R网络多径干扰产生的主要原因和具体场景,针对一种较为常见的场景进行建模,量化分析基站直放站间距离与产生多径干扰的关系,发现移动台距离基站位置越近,产生多径干扰可能性越大,根据模型提出处理多径干扰问题的网络优化思路,并通过C3无线通信超时的网络故障案例验证该优化方法的可行性。  相似文献   

20.
分析CTCS-3级列控系统无线连接超时的故障原因,并给出相应的处理措施;提出预防故障发生和减小故障影响的建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号