首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
在计算桥上无缝线路的纵向阻力时,阻力模型通常采用无缝线路设计规范中建议的双折线纵向阻力模型,即有载与无载分别考虑后再线性叠加,未考虑钢轨的非线性行为。在计算方法上,工程中常采用有限元模型进行计算,有限元法建模效率较低、不便于对各设计参数的更改。为准确快速求得高速铁路整体式桥上梁轨相互作用下的钢轨附加力、钢轨位移、钢轨弹塑性分界点及整体桥墩顶位移等参数值的大小,提出更贴近于桥上钢轨实际受力的多折线纵向阻力模型,并采用建立微分方程组的数值解法,通过建立具有变化规律的平衡矩阵式来求解桥上无缝线路钢轨纵向阻力值的相关参数。研究分别给出了有载、无载工况下求解整体式桥上钢轨附加应力值的规律性矩阵式,经有限元法验证,得到该方法下的温度、制动力附加应力值的误差均较小,分别为1.6%和0.5%。并结合规律矩阵式得到同时考虑有载与无载下的非线性附加力的计算方法,非线性叠加与线性叠加两方法下的总附加应力计算差值随着制动/牵引力下的梁轨相对位移值的增大而增大,当梁轨相对位移小于1.8 mm时,2种方法误差少于5%,可忽略不计,但随着梁轨相对位移的进一步增加,非线性阻力模型计算的结果则更贴近于实际。  相似文献   

2.
连续梁桥上无缝线路伸缩附加力计算研究   总被引:9,自引:0,他引:9  
连续梁桥上无缝线路存在着巨大的伸缩附加力,但一直没有恰当的计算方法。根据以往的试验和计算结果,分析了连续梁桥上无缝线路梁轨相互作用原理,采用常量阻力,拟定出钢轨伸缩附加力的形函数;根据钢轨位移和伸缩力的微分关系得到钢轨的位移函数;结合桥上无缝线路的边界条件和变形协调备件列出非线性方程组,利用MATLAB镏软件编程计算得到解答。该方法原理清晰明了,计算过程简单明确,计算结果准确,具有实践运用价值。  相似文献   

3.
通过对梁轨相互作用原理及伸缩附加力分布规律的研究,考虑连续梁中部存在一段梁轨位移相等点的情况,建立新的伸缩附加力计算模型,并用Levenberg-Marquardt算法进行求解、分析。从桥上无缝线路的理论、客观事物规律及工程应用的角度,解释、分析出现附加力平台的现象。  相似文献   

4.
5.
本文系统地从简支梁上翼缘位移的求法、钢轨纵向位移阻力函数的确定、梁轨相对位移微分方程的建立诸方面介绍了桥上无缝线路钢轨附加力的计算方法。  相似文献   

6.
连续梁桥上无缝线路附加力研究   总被引:18,自引:2,他引:18  
以往对钢轨、轨枕及梁跨结构三者之间产生相对位移的计算模型,没有考虑轨枕位移的影响。在吸收国内外研究成果的基础上,建立了考虑钢轨、轨枕、梁体相互作用的连续梁桥上无缝线路梁、轨相互作用力学模型,并用该模型分析连续梁桥上无缝线路附加力分布规律,对两种力学模型计算结果进行对比。结果表明,挠曲附加力及断轨力受扣件阻力影响很大,降低幅度最多,伸缩附加力受扣件阻力影响小些,降低幅度次之;制动附加与扣件阻力关系不大,钢轨断缝值受扣件阻力影响很大,降低扣件阻力将导致断缝增大。  相似文献   

7.
基于梁轨相互作用原理,利用有限元软件ANSYS,模拟铁路连续梁桥上无缝线路在作业当日温度最高时进行放散和未达最高温时进行放散两种方式的温度放散效果.计算结果表明:当桥梁升温到日最高温度时进行钢轨的附加伸缩力放散可以取得更好的效果;放散作业时还应该对连续梁两端同时进行放散,以降低桥上无缝线路的附加伸缩力的控制值,否则控制值就会在连续梁的左右端进行转换;释放的附加伸缩力随着该处放散长度的增加而增加.  相似文献   

8.
桥墩温差荷载引起的桥上无缝线路钢轨附加力   总被引:5,自引:0,他引:5  
采用单位荷载法计算桥墩温差荷载引起的墩顶纵向位移。根据梁轨相互作用原理,建立“轨—梁—墩”有限元模型,计算桥墩温差引起的桥上无缝线路钢轨附加力,研究桥墩温差引起的钢轨附加力的分布规律及其影响因素。研究表明:多跨简支梁桥墩温差引起的钢轨附加力的最大压力出现在右桥台处,最大拉力出现在靠近左桥台的边墩处,离桥台越远,钢轨附加力越小;随着墩高的增加,桥墩温差引起的钢轨附加力增大,建议在设计高墩桥上无缝线路时,应考虑桥墩温差引起的钢轨附加力,并与其他钢轨附加力叠加检算钢轨强度和无缝线路稳定性;桥墩温差引起的钢轨附加力,随着桥墩纵向水平线刚度的增加先快速增大,到一定程度后变缓;桥梁跨度对桥墩温差引起的钢轨附加力影响很小;钢轨附加力随着简支梁跨数的增加而增大,但逐渐变缓,当简支梁跨数超过18跨以后,钢轨附加力不再增长。  相似文献   

9.
有碴桥上无缝线路采用小阻力扣件,在梁轨相对约束的条件下,钢轨、轨枕及梁跨结构三者之间将产生较明显的相对位移,以往的计算模型没有考虑轨枕和钢轨相对位移的影响,与有碴轨道小阻力扣件桥上无缝线路工况存在较大偏差.为此,建立了一种能综合考虑钢轨、轨枕、梁体三者相互作用的有碴轨道小阻力扣件桥上无缝线路附加力计算力学模型,给出了算例,对不同扣件纵向阻力工况下计算结果进行了对比.结果表明:扣件阻力明显影响钢轨及墩台附加力的变化,扣件阻力较小时,作用在墩台上及钢轨上的附加力变化较快,扣件阻力较大时,变化较慢;墩台刚度不同,则作用在墩台上及钢轨上各种附加力随扣件阻力的变化规律也有很大差别.  相似文献   

10.
钢桁梁桥上无缝线路附加力分析   总被引:1,自引:0,他引:1  
温度跨度是影响桥上无缝线路的主要因素之一。通过对同跨度钢桁梁与简支梁桥上无缝线路附加力比较分析,发现桥梁本身的结构特征起着比温度跨度还要重要的作用。因而,桥上轨条、扣件及伸缩调节器的设置,除了应考虑温度跨度外,还应考虑桥梁结构的特征,为补充和完善《新建铁路桥上无缝线路设计暂行规定》提供依据。  相似文献   

11.
桥上无缝线路附加力计算模型研究   总被引:2,自引:0,他引:2  
有碴桥上无缝线路采用小阻力扣件,在梁轨相对约束的条件下,钢轨、轨枕及梁跨结构三者之间将产生较明显的相对位移,以往的计算模型没有考虑轨枕和钢轨相对位移的影响,与有碴轨道小阻力扣件桥上无缝线路工况存在较大偏差.为此,建立了一种能综合考虑钢轨、轨枕、梁体三者相互作用的有碴轨道小阻力扣件桥上无缝线路附加力计算力学模型,给出了算例,对不同扣件纵向阻力工况下计算结果进行了对比.结果表明:扣件阻力明显影响钢轨及墩台附加力的变化,扣件阻力较小时,作用在墩台上及钢轨上的附加力变化较快,扣件阻力较大时,变化较慢;墩台刚度不同,则作用在墩台上及钢轨上各种附加力随扣件阻力的变化规律也有很大差别.  相似文献   

12.
桥上无缝线路钢轨伸缩调节器设置问题探讨   总被引:2,自引:2,他引:0  
钢轨伸缩调节器对协调长大桥上无缝线路因梁体温差引起的梁端及长钢轨伸缩位移起到重要作用。对调节器设置问题进行系统论述,介绍国内调节器设计使用情况,建议桥梁和轨道一体化设计,谨慎在曲线上设置调节器。并结合工程案例,计算分析了调节器设置计算方法以及调节器结构伸缩值,并且根据现场调研情况,提出设置调节器的建议。  相似文献   

13.
桥上无缝线路钢轨附加纵向力及其对桥梁墩台的传递   总被引:27,自引:3,他引:27  
建立了具有普遍性的桥上无缝线路梁轨相互作用力学模型,采用有限元方法研究连续梁桥、简支梁桥无缝线路4项钢轨附加纵向力的分布及其对桥梁墩台的传递规律,分析了断轨力和制动附加力的“二维”传递方式。与实测值相比较,计算结果正确可靠。  相似文献   

14.
城市轨道交通连续梁桥上无缝线路伸缩力计算   总被引:2,自引:2,他引:0  
在总结既有文献的基础上,分析现场测试数据,根据梁轨相互作用原理,提出一种以边界和变形协调条件为基础来计算城市轨道交通连续梁上伸缩力的模型,解决了采用常量阻力无法得出城市轨道交通长连续梁伸缩力的问题。采用C++语言编程计算。  相似文献   

15.
桥梁的温度跨度是影响桥上无缝线路附加力的最重要的因素之一,合理的布置桥梁支座可以有效地减小钢轨伸缩力。综合考虑钢轨、轨枕、扣件、道床及梁跨结构相互作用,建立了连续梁桥上无缝线路梁-轨相互作用模型,重点分析了桥梁支座布置对钢轨伸缩力的影响,通过计算,优化桥梁支座布置形式,减小了钢轨附加力,对桥上无缝线路的设计有一定的指导意义。  相似文献   

16.
将广义变分原理应用于桥上无缝线路附加力的计算中,基于已有的试验及计算结果,先假设钢轨伸缩附加力函数.由此得到钢轨位移及梁轨相对位移函数。通过结构的边界和变形协调条件并运用广义变分法,再计算梁轨体系各部分的能量。建立结构体系的平衡方程,采用相应的软件编制计算程序,计算结果符合工程实际。  相似文献   

17.
根据桥上无缝线路梁轨相互作用原理,采用LM算法建立纵向力计算模型,运用面向对象的C++语言,在Visual C++编程平台上进行桥上无缝线路附加力计算的后处理程序设计,给出结果图形和数据的显示及输出等.  相似文献   

18.
19.
以左端路基影响长度和桥跨上的梁轨位移相等点的位置为未知量,在每跨梁的支座处用钢轨位移连续协调条件构造非线性方程组,采用Levenberg-Marquardt算法(简为LM算法)进行求解。对某城市轻轨高架桥N跨32m混凝土简支梁分别用逐跨迭代积分法和LM算法进行计算,比较分析其结果。LM算法可以弥补传统算法中因误差积累而得不到有力学意义解的不足。在现场超多跨梁,特别是城轨高架桥的无缝线路伸缩附加力计算中,推荐采用LM算法。  相似文献   

20.
为保证铁路轨道、桥梁在温度及列车荷载作用下满足强度和稳定性的要求,大跨度桥梁需进行无缝线路纵向附加力检算。针对桥上无缝线路纵向附加力计算模型建立难度大、耗时长、且建立的模型通用性不足的特点,根据桥梁轨相互作用理论,基于Windows系统采用VB.net及ANSYS APDL二次开发语言,研发了桥上无缝线路纵向附加力计算软件。软件拥有完善的前后处理模块,前处理模块可实现多种桥跨组合等参数的输入,内核采用梁轨相互作用有限元计算程序,后处理模块可实现数据可视化及计算报告自动输出。软件操作简便,界面友好,功能强大。以60 m+100 m+60 m连续梁为例,对无缝线路纵向附加力进行了计算及结果对比,结果误差在2.12%以内,验证了编制软件的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号