共查询到17条相似文献,搜索用时 78 毫秒
1.
模糊规则的提取和模糊隶属度函数的学习是模糊系统设计中重要而困难的问题.针对当前开发模糊控制系统的一个难点——发现最优的隶属函数和模糊规则,研究了利用RBF神经网络的学习能力,从历史数据中发现隶属度函数,在一定程度上减轻了系统开发工作量,克服了由于缺乏经验而可能造成的偏差.文中探讨了一种用于提取模糊规则的RBF神经网络结构,提出了基于此网路结构的模糊隶属度函数学习算法,最后给出了用于验证该算法有效性的仿真实例. 相似文献
2.
一种模糊隶属函数的自动生成算法 总被引:2,自引:2,他引:2
提出了一种模糊隶属函数的自动生成算法,该算法基于样本数据的变化趋势对数据进行预处理,同时结合模糊C均值方法,实现连续数据的离散化,直观、合理地确定了模糊隶属函数的中心参数,并应用MATLAB语言实现了模糊隶属函数的自动生成算法。 相似文献
3.
基于改进RBF神经网络对股价的演变预测 总被引:1,自引:0,他引:1
对RBF神经网络进行了分析,建立了RBF神经网络模型,并对此模型进行了改进,使其具有更好的预测性能.把一类非线性较强的时间序列(万科A股2009年6月份股票价格)利用该模型进行了非线性逼近.用Matlab软件对网络的学习与训练过程进行了数值仿真.实验结果表明:利用改进后的网络模型对非线性时间序列进行短期预测是可行的,其预测精度高于改进前的预测精度,改进方法有效. 相似文献
4.
5.
基于RBF神经网络的短时交通流量预测 总被引:3,自引:0,他引:3
城市交通网络是个复杂的系统,不同时段的交通流量之间有着非线性关系.神经网络具有识别复杂非线性系统的特性.利用RBF神经网络构建了短时交通流量动态预测模型,对某城市道路的短时交通流量进行预测,取得了较好的结果. 相似文献
6.
提出了一种基于模糊聚类技术和RBF神经网络的混合智能高速公路事件自动探测算法,同时改进了用于RBF神经网络训练的Oils(正交最小二乘)选择算法.仿真实验证明,改进的OLS选择算法大大提高了RBF神经网络的训练速度同时具有无须事先确定RBF中心的优点,将之运用于公路事件探测可以获得满意的性能. 相似文献
7.
提出综合利用系统前向预测和后向预测对混沌时间序列进行建模,从物理学原理上解释了该模型相对于前向预测模型和后向预测模型的好处.计算机仿真结果表明:对于时间可逆性较好的混沌系统,前后向联合预测模型的建模性能比前向预测模型好,前向预测模型比后向预测模型预测性能好,但对于时间可逆性差的混沌系统,前后向联合预测模型的建模性能较前向预测模型略差,而后向预测模型比前向预测模型的预测性能差了很多. 相似文献
8.
9.
为了改善传统PID控制器的控制效果,采用RBF神经网络对控制系统PID参数进行自整定。分析了RBF神经网络PID整定原理,给出了相应的实例,并对该系统进行了仿真分析。仿真结果表明,采用RBF神经网络整定的PID控制器快速性好,自适应力强,具有良好的控制品质。 相似文献
10.
基于RBF神经网络因子分析的汽车保有量预测 总被引:1,自引:0,他引:1
汽车保有量预测对城市交通的发展方向有直接的参考意义,通过分析影响城市汽车保有量的因素,采用因子分析法提炼出较少的线性无关的主要因素,建立预测城市汽车保有量的RBF神经网络模型.最后通过实例分析,对RBF神经网络因子分析法计算结果和全要素神经网络模拟结果比较,得出RBF神经网络因子分析法在运算效率、运算精度上的优越性. 相似文献
11.
利用GA智能优化算法和RBF神经网络逼近算法设计了一种USV运动滑模理想跟踪控制方法.首先利用改进的遗传算法对RBF网络参数进行在线寻优以进而提高其逼近性能.其次,将学习速度较快的局部RBF神经网络对滑模控制设计中存在的船舶运动系统函数不确定项进行逼近,使得由于滑模面的不间断切换引起的控制输入抖振问题得到有效地解决.对比实验说明了在同等条件下,上述智能控制系统稳定时间更快,超调量更小,以及输入舵角更平滑. 相似文献
12.
利用神经网络的非线性映射特性,将神经网络应用于非线性系统辨识。利用径向基神经网络来辨识非线性系统,并对两种不同RBF神经网络辨识算法进行比较。仿真结果表明,改进的算法具有学习速度快,辨识精度高的特点。 相似文献
13.
杨海荣 《长沙交通学院学报》2006,22(1):68-71
根据RBF网络能以任意精度逼近任意函数这一特性,将RBF网络应用于空间插值,认定地表空间坐标的空间分布可以用一复杂的非线性函数模拟。该函数是由多种因素综合作用的结果,如果以各因素为输入、对应空间坐标值为期望输出,对网络进行训练可对地理要素的空间分布进行模拟。试验表明,神经网络应用于空间插值是可行的。 相似文献
14.
针对铁路客运量在时序上的复杂非线性特征,采用径向基函数(RBF)神经网络对铁路客运量时间序列进行预测.用自相关分析技术分析时间序列的延迟特性,据此确定RBF神经网络的输入、输出向量,建立了基于MATLAB7.0环境下的RBF神经网络客运量预测模型,并用大连站实际客运量数据进行了验证.结果表明,该模型拟合精度和预测精度较高、计算速度较快. 相似文献
15.
基于径向基神经网络的大连站客运量预测 总被引:3,自引:0,他引:3
针对铁路客运量在时序上的复杂非线性特征,采用径向基函数(RBF)神经网络对铁路客运量时间序列进行预测.用自相关分析技术分析时间序列的延迟特性,据此确定RBF神经网络的输入、输出向量,建立了基于MATLAB7.0环境下的RBF神经网络客运量预测模型,并用大连站实际客运量数据进行了验证.结果表明,该模型拟合精度和预测精度较高、计算速度较快. 相似文献
16.
基于RBF神经网络设计的桥梁结构损伤识别方法研究 总被引:1,自引:0,他引:1
首先根据桥梁结构的动力特性分析,构造了用于结构损伤识别的损伤标示量,并从理论上分析了该参数用于结构损伤识别的可行性.然后,从径向基函数(RBF)神经网络结构、网络设计和网络训练算法等方面论述了RBF神经网络理论,着重说明RBF网络的调用及径向基函数中心和宽度的确定步骤.最后,以一座装配式预应力钢筋混凝土系杆拱桥为工程实例,通过改变构件的弹性模量降低单元刚度来模拟结构损伤程度,并以任意三组向量对网络进行测试,说明了基于频率参数和RBF网络方法的结构损伤识别的可行性和准确性. 相似文献
17.
海洋环境中,舰船静电场信号易受背景噪声的影响,给目标检测带来了困难.通过对静电场的分析,提出了一种低信噪比下检测舰船静电场的方法,首先对信号进行小波分解并在低频段进行晕构,然后利用RBF神经网络对海洋环境噪声建立了预测模型,以模型对于接受信号的一步预测误差作为检验统计量来判断目标是否存在.将该方法用于实测舰船静电场信号的检测,取得了较好的效果. 相似文献