首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Parameterisation of clastic sediments including benthic structures   总被引:1,自引:0,他引:1  
The sediment transport processes in the south-western Baltic Sea are predicted by means of a numerical model in the project DYNAS. There are two sediment parameters that influence the results of modelling remarkably: critical shear stress velocity and bottom roughness. This paper presents the way how to parameterise these factors and extrapolate them into the investigation area. The critical shear stress velocity is parameterised basing on grain size data, combining approximations after Hjulström [Hjulström, F., 1935: Studies in the morphological activity of rivers as illustrated by the river Fyris. Geological Institution of University of Uppsala: Bulletin (25): 221–528.], Shields [Shields, A., 1936: Anwendung der Ähnlichkeits-Mechanik und der Turbulenzforschung auf die Geschiebebewegung. Mitteilungen der Preussischen Versuchsanstalt für Wasserbau und Schiffahrt (26): 26 pp.] and Bohling [Bohling, B., 2003: Untersuchungen zur Mobilität natürlicher und anthropogener Sedimente in der Mecklenburger Bucht. unpublished doctoral thesis, Mathematisch-Naturwissenschaftliche Fakultät, Ernst-Moritz-Arndt-Universität Greifswald/Germany, 156 pp.]. The roughness length, in the case of absence of macro zoo-benthos and their structures, is parameterised basing on grain size too employing Soulsby [Soulsby, R.L., 1997: Dynamics of Marine Sands: a Manual for Practical Applications. London, Thomas Telford Publications. 249 pp.], Nielsen [Nielsen, P., 1983: Analytical determination of nearshore wave height variation due to refraction shoaling and friction. Coastal Engineering 7, 233–251.] and Yalin [Yalin, M.S., 1977: Mechanics of Sediment Transport. Pergamon Press, New York. 298 pp.]. No equivalent simple parameterisations for biologically caused bed roughness exist. Here, findings of Friedrichs [Friedrichs, M., 2004: Flow-induced effects of macro zoo-benthic structures on the near-bed sediment transport. Dissertation, Universität Rostock, 80 S.] and estimations by the DYNAS biologists group were combined in order to derive roughness lengths from abundance measurements of four previously selected key species which represent the originators of the dominating benthic structures at the sea floor in the south-western Baltic Sea. Critical shear stress velocity and bed roughness are known at few sample sites only. They were extrapolated into the larger investigation area using a proxy-target concept. The mean near bottom milieu (bathymetry, median grain size, salinity, oxygen) which was derived using results from numerical modelling serves as the proxy. Since the milieu parameters are measured at the sampling sites for which the target parameters have been determined, a combined hierarchical and supervised classification was employed to transfer the local knowledge into the unknown investigation area.  相似文献   

2.
3.
Sandy sediments in shallow coastal waters of the Baltic Sea are often characterised by large numbers of biogenic structures which are produced by macrozoobenthos species. A series of experiments was devised to quantify how the interaction of such structures with the near-bed flow regime affects the sediment flux. Most experiments were done with simplified replicates of structures generated by typical species commonly found in the Mecklenburg Bight, starting with solitary structures and regularly-spaced arrays in a range of characteristic population densities, followed by a complex benthic macrofauna community, both artificial and alive. A laboratory flume channel, equipped with an acoustic Doppler flow sensor and a topography scanning laser, was used for high-resolution measurements (2 mm horizontal step size and 0.3 mm vertical resolution) of sand erosion (220 µm median grain size, at 20 cm s− 1) and fine particle deposition (8 µm grain size, at 5 cm s− 1). Sediment transport threshold values were measured for each layout. As a rule-of-thumb, both the erosion fluxes and the deposition of suspended matter increased considerably at low population densities (below 2%, expressed as percent of the sediment surface covered, i.e. roughness density RD). Above densities of 4%, erosion almost stopped inside the test arrays, and deposition remained well below the level of unpopulated areas. An attempt to extrapolate these findings to field conditions (using field current velocity data from 2001) showed that the net flux switched from erosion to deposition for densities above 5%. These parameters can now be integrated into a numerical sediment transport model coupling waves, currents, sediment dynamics and biological processes, which is currently under construction at the Baltic Sea Research Institute (IOW), Rostock, Germany.  相似文献   

4.
WANG Xiao-hua 《水道港口》2010,31(5):320-320
In the high-energy environment of coastal seas and estuaries,strong sediment resuspension/ deposition events are driven by surface waves,tides,winds and buoyancy driven currents.In recent years,A POM based three-dimensional,wave-current coupled,sediment transport model has been developed by the University of New South Wales.This paper presents several examples of the model applications to study sediment dynamics in the environments where forcings such as waves,tides,and winds are equally important to affect sediment fluxes and distributions.Firstly,the sediment transport model coupled to the Yellow Sea general circulation model and a third generation wave model SWAN was implemented in the Yellow Sea to study the dynamics of the sediment transport and resuspension in the northern Jiangsu shoal-wate(rNJSW).The sediment distributions and fluxes and their inter-annual variability were studied by realistic numerical simulations.The study found that the surface waves played a dominant role over the tides to form the turbidity maxima along the muddy coast of NJSW. Secondly,the sediment transport model was used to explore the effect of suspended sediment-induced stratification in the bottom boundary laye(rBBL).The model uses a re-parameterized bottom drag coefficient Cd that incorporates a linear stability function of flux Richardson number Rf.The study has shown that the sediment induced stratification in the BBL reduces the vertical eddy viscosity and bottom shear stress in comparison with the model prediction in a neutrally stratified BBL.In response to these apparent reductions,the tidal current shear is increased and sediments are abnormally concentrated within a thin wall layer that is overlain by a thicker layer with much smaller concentration.The formation of this fluid-mud layer near the seabed has led to a significant reduction in the total sediment transport.This study contributes to the understanding of formations of tidal flats along the coasts of turbid seas and estuaries.  相似文献   

5.
建立了甬江河道及口外海域平面二维潮流泥沙数学模型,对2015年6月半个月的潮流场和悬沙场进行模拟,模拟结果与实测资料吻合良好。计算得到了研究区域洪季的余流场和输沙格局,结果表明:甬江口外余流整体由西北指向东南,河道余流指向下游;除口门局部水域,甬江口外输沙格局基本与余流场一致,悬沙经涨潮流的作用被带入甬江河道,致使河道内近口门处的输沙格局由口门向内;甬江口局部区域输沙格局与余流场存在差异的原因是悬沙输移与潮流运动存在时间上的滞后。  相似文献   

6.
Hydrodynamic processes control many geochemical and ecological processes in the sea. In this paper, the influence of up- and downwelling and entrainment on the ecosystem components are studied. The ecohydrodynamic model was initially used to simulate the whole Baltic Sea to get the boundary conditions for the Gulf of Riga. Then, to study the influence of different hydrodynamic conditions on the algal bloom, three simulations were made for the Gulf of Riga using different boundary and entrainment conditions. It appears that upwelling in the gulf was strongly dependent on open boundary conditions between the Baltic Proper and the gulf. The vertical transport in the Gulf of Riga was many times more intensive in the calculation system Baltic Proper and Gulf of Riga, than in the case where only the Gulf of Riga was simulated. The blue–green algal bloom was influenced by the vertical transport due to different nutrients' limitation mechanism.  相似文献   

7.
天津港外航道水动力条件及工程泥沙淤积研究   总被引:1,自引:1,他引:0  
依据最新的水文、泥沙实测资料,利用风浪潮流泥沙数值模型对开挖深水航道泥沙淤积情况进行了计算。根据近年来现场实测水文、泥沙资料,结合本项研究工作进行了统计分析,为数模计算提供参数;建立了多重嵌套潮流数学模型,计算正常天气下工程实施前、后的海域潮流场分布情况;建立了海域风浪过程计算模型和泥沙运动模型,将波浪、潮流、泥沙模型耦合,计算了在年均含沙量的风浪条件作用下所造成的回淤情况,给出了航道建成后的年淤积分布情况。提出了天津港南、北防波堤延伸到16 0后的航道的淤强分布特征,从泥沙方面为航道的开挖提供了设计依据。  相似文献   

8.
波浪潮流动床泥沙模型在工程泥沙研究中的应用   总被引:2,自引:0,他引:2  
分析工程海域的自然条件 ,采用波浪潮流动床泥沙模型研究方法 ,研究工程海域泥沙输移规律 ,预报工程方案下引水渠的泥沙淤积。  相似文献   

9.
港珠澳大桥岛隧工程沉管基槽开挖回淤强度研究   总被引:1,自引:0,他引:1  
通过分析港珠澳大桥沉管隧道附近水沙条件及沉管开挖位置试挖槽回淤特征及影响因素,利用二维潮流及泥沙扩散数学模型模拟了沉管开挖前后水流变化及疏浚船舶施工溢流泥沙扩散淤积分布,综合考虑疏浚溢流因素及自然泥沙回淤因素,结合回淤公式对沉管基槽开挖回淤进行了分析研究和估算,结果显示挖槽后沉管基槽开挖位置流速减小40%~60%,流向更偏向垂直于挖槽基线;疏浚溢流泥沙扩散呈"窄条"型分布,泥沙扩散0.005 g/L浓度线最远范围不超过2 km,溢流泥沙主要沉淤至槽底内,两侧边坡也有所淤积,淤强低于挖槽底部。通过计算,基槽开挖后年淤积强度1.3~2.8 m/a。  相似文献   

10.
左书华  李蓓  张征  杨华 《水运工程》2011,(1):164-170
洋山港海域多岛屿、多汊道,是由大、小洋山两条岛链围成的喇叭口型的海域,潮汐水道以落潮流为主、高含沙量、强潮流,泥沙运动主要以悬沙为主。通道内潮流基本为东南-西北向往复流,潮流平均流速在1.0 m/s,最大流速都在2.0 m/s以上,含沙量在1.0 kg/m3以上。根据其海域边界特点,利用任意三角形网格建立了能较好拟合洋山港海域边界的二维潮流泥沙及地形冲淤变化数学模型。应用2006年4月实测水文泥沙及地形冲淤资料进行了验证,验证结果表明,该海域潮位及定点同步垂线流速、流向、含沙量过程的计算值与实测值吻合良好,洋山港海域通道内地形冲淤变化情况和实测值接近,较好地复演了洋山港一、二期工程建设后海域流场、含沙量场和地形变化。  相似文献   

11.
长江口北槽深水航道回淤量计算模型研究*   总被引:2,自引:0,他引:2       下载免费PDF全文
把长江口北槽深水航道内2012年洪枯季两次、大中小潮的观测资料以及对应时段的航道回淤量等实测数据,引入到常用的近底层泥沙通量计算模型中,通过选取和率定其中主要的模型计算参数以及率定人工维护条件下航道内底层泥沙的沉降概率,最终建立了一个适合长江口北槽深水航道回淤量计算的数值模型,并利用洪枯季航道回淤的实测资料对该计算模型进行验证,得到较符合的结果。  相似文献   

12.
A flow-dependent critical-point method for investigating topographically controlled flow in natural channels is applied to the bottom current through the Irbe Strait connecting the Baltic proper and the Gulf of Riga. This approach is based on the functional formalism due to Gill [Gill, A.E., 1977. The hydraulics of rotating-channel flow. J. Fluid Mech., 80, 641–671.], and here is used for the stratified flow structure observed during the IRBEX-95 field campaign. A critical section of the realizable flow regime was found to be located slightly downstream of the most pronounced horizontal constriction of the channel. The predicted baroclinic volume flux 7200 m3 s−1 overestimates the observed mean bottom-water transport by around 30%, a discrepancy which most likely can be explained by the lack of sea level conditions and friction in the model.  相似文献   

13.
瓜达尔港疏浚弃土对港内淤积的影响   总被引:1,自引:0,他引:1  
韩西军  杨树森 《水道港口》2005,26(3):139-143
在1996和2001年现场实测水文、含沙量、底质、波浪等资料基础上,利用二维潮流、泥沙数值模拟技术对工程区附近水域的潮流、抛泥后泥沙的沉积、部分细颗粒泥沙随涨、落潮流的运动情况进行了研究,同时就该部分细颗粒泥沙对航道的影响作出了评述。  相似文献   

14.
针对港珠澳大桥工程和其所在海区的特点,基于TK-2D软件建立了不规则三角形网格的伶仃洋内外海域大范围二维潮流泥沙数学模型和大桥工程区附近的小范围局部细化的二维潮流泥沙数学模型,根据现场实测资料对模型进行了充分的验证,分析了工程海区的潮流悬沙特征,为进一步论证港珠澳大桥建设方案对工程海区的影响奠定了基础。  相似文献   

15.
泥沙淤积将影响高桩码头的正常使用。为掌握泥沙淤积对高桩码头基桩的影响规律,借助有限元分析方法,结构与土均按三维实体单元建模,桩土间设置接触单元考虑桩土相互作用,采用单元生死近似考虑泥沙淤积过程,岩土参数采用实测位移资料进行校准。分析结果表明,泥沙淤积引起的附加土压力将使最大弯矩出现在基桩顶部,且大部分为陆侧受拉,最危险截面出现在桩头向海的桩顶附近;对泥沙进行清淤处理后,将明显改善基桩受力状态,极大降低淤积对基桩造成的不利影响。  相似文献   

16.
杨树森  韩西军  阎勇 《水道港口》2005,26(3):134-138
利用现场实测资料,对工程海区的潮汐、潮流、风、波浪、含沙量及底质等自然条件进行了对比分析,并结合潮流和波浪数值模拟结果,利用经验公式计算方法,对不同建港方案的年淤积量及一次大风天气情况下悬沙和推移质泥沙淤强分布和淤积量进行了研究,同时就该工程对渔港泥沙淤积的影响作了阐述。  相似文献   

17.
根据曹妃甸港区海域的水沙运动,分析了该海域各个部位的冲淤状况,结合各个部位的安全重要程度提出了相应的冲淤监测要求,以及各个部位水下泥沙冲淤监测的技术方案,建立起整个港区水域的冲淤监测系统。  相似文献   

18.
张娜  杨华  严冰  赵洪波 《水运工程》2012,(2):128-133
根据连云港海域的特点,建立能考虑风浪影响的三维潮流、泥沙数学模型,对真实的"韦帕"台风作用下的潮流场和泥沙场进行模拟,力求更合理地反映近岸泥沙运动规律。数学模型计算得到的流场、含沙量场和航道回淤结果与现场实测资料进行验证,二者吻合较好。在此基础上,对连云港港30万吨级航道在"韦帕"台风作用下的回淤情况进行了预测,给出了航道的沿程淤强分布,为航道的设计提供依据。  相似文献   

19.
连云港埒子口—灌河口海域为淤泥质向粉沙质海岸的过渡带,水沙运动复杂。在考虑淤泥质和粉沙质泥沙特性的基础上,构建泥沙数学模型,可以在一个模型内同时模拟两种不同性质泥沙运动,验证结果令人满意;同时,利用所建立的泥沙数学模型还可以计算悬沙的沉速场,据此分析埒子口—灌河口过渡带的泥沙运动特征和影响因素。  相似文献   

20.
The Gulf of Carpentaria is an epicontinental sea, deeply indented in the north of the Australian continent. A selection of 100 samples of the surficial marine sediments collected on a regional grid were analysed for major chemical elements and mineral phases using wet chemistry, X-ray diffraction, optical and electronic microscopy.The surficial sediments of the Gulf are highly heterogenous and consist of both young and relict mineral and carbonate components. The terrigenous fraction is fluvial in origin and consists mainly of quartz (16–68%), minor feldspars (0–9%) and traces of siderite. The clay species determined include kaolinite, mixed layers of smectite–illite and illite; clays range up to 15% and do not present a clear pattern of distribution. Biologically productive areas of the Gulf, mainly in shallower parts, supply the carbonate component of the sediment. The carbonate material is comprised of aragonite (7–30%), low-Mg (5–30%) and high-Mg calcite (7–28%), and has variable degrees of alteration caused by sediment transport and/or diagenesis. Such processes are partly reflected in the regional distribution of mineral and chemical components throughout the Gulf. The interpretation of the data set was further refined by cluster analysis (Ward's method), which separated eight clusters (provinces) of sedimentary material. The eastern side appears to be the main source of both terrigenous and carbonate sediment, which is inferred to be transported clockwise. During this dispersion, physicochemical and mineralogical changes take place; the sediments become finer grained and characterised by more stable species of carbonates. As a consequence, the center and the northwest sections are clay-rich and contain dominantly low-Mg calcite.Ooids are relict components that have been identified in areas in which they were not mentioned by previous studies, notably in the southeast. These carbonate particles consist of concentric layers of aragonite deposited around a nucleus of angular quartz, most likely of fluvial origin.This study indicates a complex history over a short time frame with sediment supply, biological production and current patterns being the main factors that control the sediment character and its regional distribution within the Gulf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号