首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
为了进一步提高车辆跟车过程中的跟踪性、安全性、舒适性和燃油经济性,针对已有间距策略表现过于保守或反应过于激烈等不足之处,提出了一种预测恒定车头时距策略。该策略考虑了相对加速度,建立了一种预测型期望车间距模型,进而应用于模型预测控制的多目标自适应巡航控制系统中,能进一步提高模型预测控制对多个控制目标的综合协调能力。搭建上层控制器、下层PID控制器、油门制动切换、逆纵向动力学模型。在多工况下仿真,通过建立性能评判指标对多目标进行量化分析。结果表明,所提出的间距策略在保证安全性的前提下,提升了自适应巡航控制系统的综合性能。在不同驾驶风格的车头时距下,跟踪性、舒适性和燃油经济性均有良好表现。  相似文献   

2.
提出一种兼顾节能与安全的电动车自适应巡航控制算法.定量分析加速度对电动车经济性的影响,构建燃油经济性与跟车安全性的性能指标,采用模型预测控制方法协同优化系统性能指标,仿真与试验的结果表明,所提出的算法能兼顾整车经济性与安全性.  相似文献   

3.
提出一种兼顾节能与安全的电动车自适应巡航控制算法。定量分析加速度对电动车经济性的影响,构建燃油经济性与跟车安全性的性能指标,采用模型预测控制方法协同优化系统性能指标,仿真与试验的结果表明,所提出的算法能兼顾整车经济性与安全性。  相似文献   

4.
汽车在巡航时以驾驶员设定的固定期望车速匀速行驶,系统控制发动机工作在合理转速范围内,具有一定的燃油经济性,但并不能最大限度地提高车辆的燃油经济性。因此,基于现有自适应巡航技术的研究,文章拟基于云推理对汽车最优燃油经济性巡航控制策略进行研究,控制车辆始终以经济性巡航车速行驶,提高了巡航中工况切换时控制的稳定性和经济性。  相似文献   

5.
自适应巡航(Adaptive Cruise Control,简称"ACC")系统是一种可以有效减轻驾驶员疲劳,提高行车安全性,改善道路通行效率,提高车辆燃油经济性的高级驾驶员辅助系统。在重型车辆领域,该方面研究较少,随着国内陆运交通及物流行业的飞速发展,ACC系统拥有广阔的应用前景。文章以陕汽SX1318高原运输车为目标车型,设计了基于模型预测控制(Model Predictive Control,简称"MPC")的ACC系统控制算法,依据目标车型的性能参数,以提高驾乘舒适性为主要目标,制定了相应的控制策略。以Simulink和车辆动力学仿真软件Truck Sim为平台,建立了目标车型整车纵向动力学联合仿真模型,用来研究在不同巡航工况下对前方目标车辆的跟随能力及本车的行驶舒适性。仿真和实车试验测试结果表明,文章所设计的ACC系统算法,在保持预期的安全距离情况下,能有效满足性能指标要求。  相似文献   

6.
针对前车运动状态和驾驶意图的不可预知性导致传统自适应巡航控制(ACC)系统应用受限的问题,设计了一种多模式切换的自适应巡航控制方法。根据自车与前车的运动学关系划分行驶模式,采用紧急系数表征各行驶模式下的危险程度;设计模糊控制器调节模型预测控制(MPC)中目标函数的权重值,以满足不同工况下跟车性和舒适性的需求差异,实现不同控制模式间的切换。仿真结果表明,多模式切换控制方法有效提高了车辆跟车性和舒适性,在各种工况下取得了优良的控制效果。  相似文献   

7.
为了进一步提高自动驾驶汽车在交叉路口行驶时的燃油经济性,基于模型预测控制(MPC)理论,量化分析了车辆安全性、经济性、舒适性等多性能指标函数及约束,并设计了以经济性为主的交叉路口自动驾驶汽车生态驾驶控制器。仿真结果表明,所提出的控制策略能够保证良好的安全性和舒适性,与LQR控制器相比,在有前车影响和无前车影响工况下的百公里油耗分别降低15.83%和34.98%。  相似文献   

8.
《汽车工程》2021,43(7)
本文中针对自适应巡航控制系统受旁车并线影响产生的制动干预时机不确定性问题,提出了一种采用旁道车辆并线行为进行优化的自适应巡航控制策略,以获得制动干预的最佳时机。首先,建立了以历史行驶数据和周围环境为输入、基于长短时记忆网络的驾驶行为识别模型,实现对旁道车辆驾驶行为类别的有效识别。当识别出并线行为后,根据并线车辆运动状态对自适应巡航系统进行加速度控制,建立系统的预测控制模型,确定跟随性、舒适性和油耗这3项性能指标与约束条件,并引入理想点法对期望加速度进行求解,有效避免了人为选择权重因素的干扰。然后,将最优控制序列的第一个元素作用于系统,再重新评估系统状态信息以实现滚动优化。最后,建立MATLAB/Simulink仿真模型,进行定速巡航、跟车行驶和并线工况的对比仿真,并通过实车试验进行验证。结果表明:所提算法能更快响应旁车并线时跟车目标的变化,有效降低速度波动,避免了绝大部分的车辆紧急制动,同时,考虑并线驾驶特性的控制模型能有效提高乘车舒适性,降低安全风险。  相似文献   

9.
Downhill Assist Control Method for Hybrid Electric Vehicle   总被引:1,自引:0,他引:1  
为提高混合动力汽车(HEV)下坡过程中的安全性和燃油经济性,基于HEV电机制动力矩可精确调节、制动能量可回收的特点,提出了一种下坡主动安全控制方法.结合对驾驶员坡道驾驶意图的识别,建立分层控制系统架构;根据目标车速计算制动力矩,制定制动力矩在各制动子系统间的分配和动态协调策略,并进行仿真验证.结果表明,该方法在提高下坡路段HEV行驶安全性和燃油经济性的同时,减轻了驾驶员的操纵负担,改善了乘员的乘坐舒适性.  相似文献   

10.
汽车自适应巡航控制系统根据本车与前车之间的相对距离和相对速度,综合考虑车间行驶安全性、本车纵向动力学特性和驾乘人员的舒适性等多个相互关联且存在一定矛盾的性能指标,实现本车与前车安全车间距的保持控制。针对这一多目标协调控制问题,本文在动态输出反馈控制框架下,模拟真实驾驶员对车间距控制的行为特性,利用汽车行驶状态和控制变量建立了安全性、轻便性、舒适性和工效性指标,进而基于不变集和二次有界性理论提出了以上多性能指标的动态协调控制机制,建立了一套自适应巡航控制系统的车间距控制算法。最终通过跟随、驶离和切入3种典型工况的仿真,验证了算法对安全车间距保持和协调多性能指标的可行性和有效性。  相似文献   

11.
In this paper, a novel spacing control law is developed for vehicles with adaptive cruise control (ACC) systems to perform spacing control mode. Rather than establishing a steady-state following distance behind a newly encountered vehicle to avoid collision, the proposed spacing control law based on model predictive control (MPC) further considers fuel economy and ride comfort. Firstly, a hierarchical control architecture is utilized in which a lower controller compensates for nonlinear longitudinal vehicle dynamics and enables to track the desired acceleration. The upper controller based on the proposed spacing control law is designed to compute the desired acceleration to maintain the control objectives. Moreover, the control objectives are then formulated into the model predictive control problem using acceleration and jerk limits as constrains. Furthermore, due to the complex driving conditions during in the transitional state, the traditional model predictive control algorithm with constant weight matrix cannot meet the requirement of improvement in the fuel economy and ride comfort. Therefore, a real-time weight tuning strategy is proposed to solve time-varying multi-objective control problems, where the weight of each objective can be adjusted with respect to different operating conditions. In addition, simulation results demonstrate that the ACC system with the proposed real-time weighted MPC (RW-MPC) can provide better performance than that using constant weight MPC (CW-MPC) in terms of fuel economy and ride comfort.  相似文献   

12.
针对增程式电动汽车动力系统参数匹配的问题,在Simulink-Cruise联合仿真平台上建立了用于匹配设计的整车初始模型,提出了基于典型工况统计分析的匹配设计方法,对增程式动力系统进行了稳态匹配.为了进一步验证设计参数的合理性,采用恒温式定点控制策略和CD-CS型最优曲线功率跟随控制策略进行了仿真对比分析,验证了匹配参...  相似文献   

13.
针对某轻型商用车稳态回转时侧倾度偏大的问题对其悬架进行优化改进。基于ADAMS/car搭建整车多体动力学模型,通过前悬架反向平行轮跳试验、后悬架理论计算验证了悬架仿真模型的准确性。进行整车稳态回转工况和转向盘中间位置转向工况仿真分析,结果表明,车身侧倾度偏高。为实现操纵稳定性优化分析的流程自动化,提出了基于modeFRONTIER的联合仿真方法。以悬架设计参数为优化变量,以汽车的侧倾度与横摆角速度响应滞后时间为优化目标,采用拉丁超立方试验设计方法拟合得到混合代理模型,并结合多目标粒子群优化算法对悬架系统进行多目标优化,获得了悬架系统优化方案。优化结果显示,在不影响平顺性的前提下,汽车车身侧倾度降低了13.93%,横摆角速度响应滞后时间降低了2.75%,整车操纵稳定性得到了提升。  相似文献   

14.
基于对混合动力汽车能量管理策略优化的目的,建立了丰田Prius Plug-in混合动力汽车的MATLAB/Simulink数学模型,用数学公式描述了系统优化控制问题,采用粒子群优化算法对该包含众多约束条件的非线性优化问题进行了求解,利用PSAT专业软件对比分析了基本型优化控制算法、改进型优化控制算法和规则控制算法等的控制效果及燃油经济性。结果表明,经过优化后的Plug-in混合动力汽车在不牺牲汽车各项性能的前提下能提高动力系统工作效率。  相似文献   

15.
基于对混合动力汽车能量管理策略优化的目的,建立了丰田PnusPlug-in混合动力汽车的MATLAB/Simulink数学模型,用数学公式描述了系统优化控制问题,采用粒子群优化算法对该包含众多约束条件的非线性优化问题进行了求解,利用PSAT专业软件对比分析了基本型优化控制算法、改进型优化控制算法和规则控制算法等的控制效果及燃油经济性。结果表明,经过优化后的Plug-in混合动力汽车在不牺牲汽车各项性能的前提下能提高动力系统工作效率。  相似文献   

16.
针对某新型双电机行星耦合插电式混合动力汽车(PHEV)中发动机在起停及怠速运行状态下会导致油耗增加的问题,基于等效燃油消耗最小能量管理策略,加入发动机起停优化控制模块,以进一步改善整车燃油经济性.建立了整车动力学和传动模型并加入发动机起停优化控制模块,对ECMS能量管理策略输出的发动机及电机最优目标转矩进行重新优化分配...  相似文献   

17.
针对恶劣天气下区域管制区内,多航空器改航路径规划中缺乏降低管制员工作总负荷的考虑.以贵阳区域管制区为例,研究了恶劣天气下多航空器改航路径的仿真优化算法.采用灰色模型预测飞行受限区的动态影响范围;利用几何算法预先规划可供选择的改航路径;改进离散粒子群优化算法的运算规则;以整个区域管制区内改航总路径最短和管制员工作总负荷最...  相似文献   

18.
对配送方案的选择提出多目标优化,在满足客户需求的前提下,力求成本最低和各配送中心负荷均衡,建立多目标规划模型。运用粒子群算法对解空间粒子进行局部和全局的搜索,再运用自适应网格算法对非劣解外部集进行更新和维护,保持其规模。实证表明,采用基于自适应网格的多目标粒子群算法对该模型进行求解能够得到均匀分布于解空间的Pareto前沿。结果表明两目标具有一定的悖反关系,据此选择满意解。  相似文献   

19.
基于多目标遗传算法的混合电动汽车参数优化   总被引:1,自引:0,他引:1  
房立存  秦世引 《汽车工程》2007,29(12):1036-1040
动力系统和控制器参数的同时优化是提高混合电动汽车(HEV)燃油经济性并降低排放的关键。这类优化问题涉及多个相互冲突的优化目标和非线性约束,是典型的多目标优化问题。文中采用多目标遗传算法求解该优化问题的Pareto最优解集,并应用ADVISOR对实际算例的优化结果进行比较分析。结果表明,应用该方法可找到多组可行解,在满足原车动力性要求的前提下能有效提高燃油经济性,降低排放。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号