共查询到20条相似文献,搜索用时 62 毫秒
1.
为分析地铁列车运行引起的地面振动响应特性,运用ANSYS/LS-DYNA计算软件建立振动响应分析模型,并结合广州地铁实际情况,分析不同轨面埋深、土层类型、运行车速、列车车型、减振扣件及建筑物影响下的地面振动响应特性。研究结果表明:轨面埋深会对地面振动产生一定影响;隧道下卧土层对于地面振动的影响小于上覆土层的影响;降低列车车速可有效减小地面的振动响应;地铁A型车相较于B型车,其运行引发的地面振动响应更大;减振扣件对于地铁列车运行引起的地面振动减振效果明显;建筑物对于地面振动传播具有一定衰减效果。 相似文献
2.
阻尼谐振器对地铁线路道床板低频振动的影响 总被引:1,自引:0,他引:1
介绍了一种在地铁线路道床板上安装阻尼谐振器以降低低频振动的方法。建立了道床系统有限元模型,分析道床板上安装阻尼谐振器的减振特性。在相同轨道条件下,对普通道床和安装阻尼谐振器的道床进行了锤击和在线振动测试,对比分析其频率响应函数。结果表明,在正常的地铁轨道条件下,与无阻尼谐振器道床相比,安装阻尼谐振器的道床板的低频振动可降低10 dB以上。 相似文献
3.
以南昌地铁一号线旁穿建筑物南昌二中宿舍楼所在土层为研究条件,采用有限元软件ANSYS建立了轨道—轨道板—隧道—大地有限元模型。通过多体动力学软件SIMPACK的Wheel/Rail(轮轨)模块获取轮轨作用力,将轮轨作用力施加到有限元模型上求解并作瞬态分析。从时域、频域和Z振级的角度分析了隧道埋深、行车速度、场地土层特征、上行线和下行线隧道净距等因素对地面敏感点振动的影响规律。分析结果表明:增大隧道埋深、降低列车行驶速度可以有效减缓地面振动;土的弹性模量对地面振动有影响,随着土层弹性模量的增大,地面敏感点的振动响应先增大后减小;增大双线隧道的净间距是控制地面振动的措施之一。 相似文献
4.
通过利用多通道的振动测试系统,对实际运营的深圳地铁某列车进行车厢内振动实测,了解其实际运行时的振动特性,考察车辆在相同运行速度和不同运行速度下的振动情况.通过对实测数据进行分析,计算了车辆客室振动的人体Z振级,讨论了车辆的垂向平稳性,总结了地铁车辆客室实际振动大小、振动频率范围与车辆运行速度的关系. 相似文献
5.
以宁波地铁3号线一期工程出入段线类矩形盾构隧道为研究对象,在隧道内与地面布置加速度传感器进行同步测试分析,测试分为一列列车运行与两列列车同向并行运行两种行车工况。结果表明:两列列车同向并行运行工况与一列列车运行工况相比,同一测点振动加速度有效值明显增大;各测点振动加速度级在绝大部分频段均有增大,且在4 Hz处增大最显著;两种行车工况下,过车引起的振动由隧道壁向地面各测点传播过程中,呈波动衰减趋势,高频段振动传递损失较低频段大,大部分测点在5 Hz以内频段传递损失均出现负值,说明此频段附近振动加速度从隧道壁传递至地面有放大现象;两列列车同向并行运行工况对环境振动评价影响较大,在线路设计时,建议考虑列车会车对环境振动的影响。 相似文献
6.
为了研究一种新型分离式压缩型中等减振扣件在城市轨道交通应用中的减振效果,为城市轨道交通设计提供参考,对铺设新型中等减振扣件的常州地铁一号线进行现场测试,将测试结果与GJ-3型减振扣件和DTⅢ2型扣件进行对比。测试结果表明:新型中等减振扣件的垂向和横向位移相较于GJ-3型减振扣件有所增大,扣件刚度有所减小;在3种不同的测试速度下,新型中等减振扣件的隧道壁减振效果相对于GJ-3型减振扣件分别减小了6.6、4.6、3.5 dB,减振效果显著;1/3倍频程分析表明,新型中等减振扣件在50~200 Hz振动加速度级降低明显;在3种不同的测试速度下,隧道壁最大加速度级衰减值分别为21.58、19.12、23.05 dB。 相似文献
7.
以南昌地铁1号线邻近建筑二中宿舍楼为研究对象,基于动力反应分析理论,建立隧道-大地-建筑的三维有限元模型,在计算边界域施加黏弹性人工边界,研究双线双向隧道上行线和下行线不同隔振工况下,宿舍楼室内的振动响应及振动在楼层之间的传递规律。研究结果表明:上行线和下行线隧道均采用整体道床时,室内振动超出标准;如果仅在上行线隧道采用钢弹簧浮置板道床进行隔振,室内振动降低到标准以内,但是富余量不大;当上行线和下行线隧道均采用钢弹簧浮置板道床进行隔振时,宿舍楼室内的振动大大降低,距标准规定的限值有很大的富余量。研究发现钢弹簧浮置板对6.3~15 Hz范围内的振动有放大效应,隔振区间主要在15 Hz以上;低频振动随着楼层的升高而增强,Z振级在各楼层之间变化不大。 相似文献
8.
为了研究不同等级复合减振预制道床的减振效果,以青岛新建地铁 4 号线张彭区间隧道段为研究对象,
测试 70 km/h 的速度下高、中等级复合减振垫预制道床轨道和普通道床轨道的振动及位移响应,通过引入铅锤 Z
振级分频振级均方根值及 Z 振级传递损失进行综合评价,分别在时域和频域内对 2 种减振等级的复合减振垫预制
道床轨道和普通道床轨道的振动特性进行对比分析,结果表明:①3 种不同减振类型道床轨道的隧道壁分频振级
均在 50~80 Hz 处达到最大,高等、中等减振道床与普通道床相比较,其减振效果(分频振级均方根差值平均值)
分别为 13.9 dB 和 8.5 dB;道床与隧道壁之间的 Z 振级传递损失值分别为 45.8 dB 和 35.1 dB;②高等、中等减振
道床以及普通道床在实际运营过车时,道床垂向位移分别为 2.298、0.265 和 0.058 mm,道床横向位移分别为 0.058、
0.025 和 0.019 mm。多等级减振通用预制道床对 20 Hz 以上振动减振效果明显,同时可根据不同需求自由选择和
更换减振等级,对减振通用预制道床的发展具有一定的指导意义。 相似文献
9.
高速铁路振动荷载作用下的土体动力响应及对下穿地铁隧道的影响分析 总被引:1,自引:0,他引:1
利用动力响应分析原理,通过有限元分析程序模拟某高速铁路现场条件,得出结构体的位移、速度及加速度时程曲线.通过对特征点的位移、速度及加速度的变化情况分析,评价在该高速铁路路基下修建下穿地铁隧道的可行性,得出下穿地铁隧道对该高速铁路后期运营的影响不大,可以满足各项指标要求;其主要的风险是施工期间的工程安全. 相似文献
10.
以地铁隧道内常使用的DT VI2型扣件为研究对象,采用车辆—轨道垂向耦合随机振动频域分析模型与有限元谱分析模型组合求解法,研究扣件胶垫阻尼的频变性对地铁隧道环境振动的影响。结果表明:与常量的扣件胶垫阻尼相比,随频率变化的扣件胶垫阻尼对地铁隧道环境低频振动影响很小,但会增大其分频最大振级,同时还会降低其分频最大振级以上频带内的振动水平,并且随着频率的持续提高,振动级的下降幅度也会越来越大;尽管可以通过单纯降低胶垫阻尼系数提高地铁隧道环境振动频域的预测精度,但难以保证对各频段振级均有较高的预测精度,因此,如不考虑扣件胶垫阻尼的频变性,易低估地铁隧道环境振动的分频最大振级,同时会高估主频段以上的振动水平。 相似文献
11.
为研究弹性道床垫减振轨道在隧道遇水不利情况下的耐久性及稳定性,通过设计室内原型试验,测试分析泡水疲劳前后轨道结构部件的性能变化,并基于试验结果和轮轨系统动力学理论,分析泡水疲劳前后弹性道床垫减振轨道的减振性能变化规律。研究结果表明:(1)疲劳后轨道结构各部件功能保持稳定,该减振轨道具有良好的耐久性;(2)泡水疲劳试验前后,扣件系统的刚度变化率为1.40%,道床垫刚度变化率为5.95%;(3)弹性道床垫减振轨道具有稳定良好的减振性能,相比普通整体道床轨道结构,能够有效降低车体、轮对及钢轨在中心频率为40~60 Hz区间内的振动加速度级。 相似文献
12.
根据某地铁曲线地段现场实测数据,对钢弹簧浮置板浸水对其减振效果及振动传递的影响进行分析。结果表明:作为特殊减振轨道结构,钢弹簧浮置板能有效地衰减道床面与隧道壁之间的振动传递,正常工作时加速度级最大衰减量(传递损失)高达44.3 dB;浸水后,在10~200 Hz频段,随着浸水量增加,道床面的加速度级在逐渐减小,隧道壁的加速度级在逐渐增大,道床传递至隧道壁的传递损失值逐渐减小,单侧浸水测试断面传递损失值减小至25~35 dB,两侧浸水测试断面传递损失值则降至10~25 dB;正常浮置板、单侧浸水及两侧浸水测试断面道床面至隧道壁的垂向传递函数值基本范围分别为0~0.01、0.01~0.05和0.04~0.3,依次呈增大趋势。这说明:作为振动传导体,水对10~200Hz频段的振动传递影响显著。 相似文献
13.
《铁道标准设计通讯》2017,(10):11-15
为研究地铁列车提速对减振垫浮置板轨道的振动特征的影响,对比分析地铁列车行车速度为80 km/h和120 km/h工况下减振垫浮置板轨道时域和频域的实测结果。分析结果表明:行车速度对减振垫浮置板轨道结构垂向位移的影响不大;行车速度为120 km/h的工况下钢轨、浮置板、隧道的振动加速度1/3倍频程的峰值较行车速度为80 km/h的工况下的峰值分别有6.2、2.8、0.5 dB的增大;分频段分析各测点振动加速度综合振级,结果显示:在0~20 Hz与20~80 Hz频段内,只有钢轨的振动加速度综合振级增长超过5%,浮置板与隧道振级变化均小于2.5%,在80~120 km/h速度范围内,行车速度的提高对减振垫浮置板轨道隧道振动的影响并不明显。 相似文献
14.
直线电机牵引系统的减振轨道结构设计研究 总被引:1,自引:1,他引:1
简述了直线电机系统的轨道结构特点。根据国外直线电机地铁的试验测试数据,提出了其环境评价振源强度的取值问题。针对直线电机系统对轨道的特殊要求,通过对碎石道床、浮置板轨道、弹性长轨枕整体道床在直线电机系统中的减振比较分析,认为弹性长轨枕整体道床能满足直线电机系统对轨道的减振降噪要求。 相似文献
15.
在综合分析轨道减振效果评价现状和存在问题的基础上,针对在轨道结构中的钢轨扣件、轨枕或道床等处额外提高轨道弹性的减振措施进行轨道减振效果系统评价方法研究。在相同或可比的条件下,利用轨道减振与非减振段轨旁测点铅垂向振动加速度得出1/3倍频程各中心频率分频振级的均方根差值作为轨道减振效果值,同时将1/3倍频程中心频率分频振级的最大和最小差值作为轨道减振效果评价的辅助指标。运用该方法对减振扣件、弹性短轨枕和浮置板轨道等3种减振措施的评价结果表明:在4~200Hz频率范围内减振扣件的减振效果值为5.2dB,有效的减振频率从50Hz开始;浮置板轨道的减振效果值为13.5dB,满足10dB以上的减振设计要求;而弹性短轨枕的减振效果值仅为3.8dB,因轨枕空吊原因没能达到设计的减振目标。该方法不仅可以比较不同轨道结构、线路条件、运营条件以及相同轨道结构不同路段的轨道减振效果,而且可以分析轨道的减振特性。 相似文献
16.
以成都—都江堰高速铁路工程为背景,通过现场测试试验,研究桥上无砟轨道铺设橡胶减振垫的减振效果.结果表明:铺设橡胶减振垫后,减振垫上钢轨和轨道板的振动略有放大,但影响甚微,而减振垫下底座板、桥梁及地面的振动显著降低,其中底座板的最大振动加速度降低了85%左右;时域内,在距线路中心线0,15和30 m处地面的最大竖向加速度振级均降低了9.5dB左右;频域内,在0~6.3 Hz频段内,橡胶减振垫的减振效果不明显;在8~20 Hz频段内,由于与轨道—桥梁—大地系统本身的自振频率重合,反而放大了地面的振动;在25~100 Hz频段内,减振作用明显,且距线路中心线越远,减振效果越显著,但距线路中心线不同距离处对应最大减振作用的频段和插入损失值不同,0m处最大减振作用出现在31.5 Hz频段,插入损失值为7.8 dB,15和30 m处最大减振作用均出现在40 Hz频段,插入损失值分别为13.6和16.4 dB.可见,橡胶减振垫能够对25 Hz以上频段的振动起减振作用. 相似文献
17.
《铁道标准设计通讯》2016,(11):1-4
为防止高速列车振动引起广深港高铁狮子洋大断面盾构水底隧道软土地层液化风险,轨道结构采用减振板式无砟轨道。为考察减振措施效果,分别建立列车-轨道模型、隧道-地层有限元模型,分析列车荷载作用下隧道结构及周围土层动力响应及分布规律,对比分析减振和非减振两种工况下地层动剪应力和加速度,结果表明,采取减振措施可有效降低软土地层液化风险,提高安全储备,达到了预期的目标。研究成果对隧道穿越软土地层设计具有指导意义。 相似文献
18.
《铁道标准设计通讯》2016,(3)
地铁减振型无砟轨道结构中,CA砂浆层位于轨道板和隔振垫之间,起着支承、传载和调整的功能。由于隔振垫的存在,CA砂浆层极易发生破坏,因此需要全面地研究轨道结构参数对CA砂浆的应力影响规律。基于弹性地基梁体模型,研究轨道板的混凝土等级、CA砂浆弹性模量、隔振垫刚度及轨道板长度4个轨道结构参数对CA砂浆应力的影响规律,并通过应力匹配图得到合理的轨道结构参数匹配。得到的结论是CA砂浆弹性模量是对CA砂浆应力影响最敏感的参数;轨道板的混凝土等级、CA砂浆弹性模量、隔振垫刚度及轨道板长度4个轨道结构参数对CA砂浆最大拉应力的影响远大于对CA砂浆最大压应力的影响;通过应力匹配图,提出较为合理的轨道结构参数匹配:轨道板使用C80等级的混凝土、CA砂浆取中低弹模3 000 MPa、隔振垫刚度取0.04 N/mm~3、轨道板长度取4.097 m。 相似文献
19.
《铁道标准设计通讯》2016,(11):10-13
基于车-轨耦合动力学理论,对钢弹簧浮置板轨道和整体道床轨道进行耦合动力学分析。对比地铁车辆在两种轨道上运行时的车体加速度、轮轨相互作用力、钢轨加速度以及轨道板(道床板)振动加速度等指标,对浮置板轨道的应用具有理论指导意义。对比从时域和频域分别进行,结果表明,将整体道床轨道替换为浮置板轨道后,车体垂向加速度、轮轨动作用力受到的影响很小,时域幅值略微有减小趋势;钢轨加速度和轨道板(道床板)表面加速度有明显增大趋势,所以浮置板轨道在减小板下振动的同时势必会引起轨道结构振动噪声增大以及疲劳伤损加快等弊端,应加以研究控制。 相似文献
20.
针对轨面不平顺对高架支承块轨道结构振动特性的影响进行现场试验,分别从时域和频域对比分析不同轨面不平顺状态下轨道结构的振动响应,重点考虑10~1 000 Hz频率范围内的振动.分析结果表明:轮轨冲击力和轨道结构振动加速度幅值随轨面不平顺幅值的增加而增大,同时也受到轨面不平顺类型和波长分布的影响;轨面不平顺引起的钢轨振动频率主要分布在50~1 000 Hz的范围内,承轨台、桥面板垂向振动频率分布在40~200 Hz的范围内,轨面不平顺的波长分布是影响轨道结构振动频率分布特性的主要因素之一;降低谐波型轨面不平顺幅值0.2mm,可以减小钢轨垂向振动水平14.1dB.建议将轨面不平顺谱加入轨道质量的评价指标中. 相似文献