首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
莫斯科至喀山高速铁路是中国高铁走出去的标志性项目之一,其设计速度达到400 km/h,在全世界范围内尚属首次,线路设计中无现成规范可以采用。研究满足400 km/h速度的一重要线路参数—竖曲线半径。采用理论分析、仿真分析及数据对比分析的方法,从安全、舒适及养护维修等方面对竖曲线半径进行研究,并得出结论:最小竖曲线半径取值主要由舒适性条件决定,当速度达到400 km/h,建议最小竖曲线半径取值32 000 m;最大竖曲线半径受养护维修(检测技术)条件影响,建议取值不大于40 000 m。  相似文献   

2.
为了合理地确定迂回线坚曲线半径的取值,研究了凸形及凹形两个断面的不同情况下还回线竖曲线半径的取值方法,并针对各种不同情况,在进行详细的公式推导后,分析得出每一种大型车辆在不同的坡度差下,能安全通过迂回线所需要的最小竖曲线半径。  相似文献   

3.
欠超高是影响曲线地段列车安全性和舒适性的关键参数,确定其合理值可为高速铁路超高设计或标准修订提供参考。基于大西高铁和赣龙铁路的曲线超高现场试验,对高速列车以不同速度通过曲线地段时列车和轨道的动力学行为进行统计分析,得到欠超高对列车平稳、安全运行的影响规律。通过与现有规范中的安全性和稳定性指标进行对比,提出了曲线地段欠超高合理取值范围建议。结果表明:欠超高对列车运行安全性和轨道正常受力影响较小,对旅客乘坐舒适性指标——车体横向加速度的影响较大;欠超高每增加10mm,横向加速度增加0.01g;当欠超高超过130mm,未被平衡的车体横向加速度会超过0.10g,严重影响乘坐舒适性。鉴于现场试验与实际运营的区别,考虑预留一定的安全冗余量,建议欠超高一般不应大于60mm、困难条件下不大于90mm、特殊困难条件下可用110mm、试验可用130mm。  相似文献   

4.
中车集团已推出新一代200 km/h级新型中速磁浮列车,但相应的线路技术标准未做系统性研究。本文利用SIMPACK软件建立车-线动力学模型,依据列车运行的舒适性、安全性评价指标,兼顾静力学计算结果,确定中速磁浮最小竖曲线半径,结果表明:(1)垂向加速度最大允许值决定最小竖曲线半径取值,且仿真分析结果较静力学计算结果大;(2)推荐凹型竖曲线最小半径在一般情况下取5 000 m,困难情况下取4 000 m;(3)凸型竖曲线最小半径一般情况下取12 000 m,困难情况下取9 000 m。  相似文献   

5.
高速铁路竖曲线地段接触线弛度设置的探讨   总被引:1,自引:0,他引:1  
本文针对高速铁路竖曲线地段的接触线弛度的设置进行了探讨,并通过现场实测,在吊弦计算时确定出竖曲线凹凸区段接触线弛度预留的具体量值,以保证良好的弓网受流质量。  相似文献   

6.
7.
高速铁路曲线线路车线耦合系统动力学性能仿真分析   总被引:1,自引:0,他引:1  
依据系统工程理论,建立高速铁路曲线线路车线耦合系统有限元模型,对曲线线路在高速行车条件下的耦合系统动力学性能进行仿真,研究时速300 km等级高速动车组作用下曲线线路安全与平稳性指标,曲线线路轨道结构各部分的振动响应、列车速度与曲线半径和超高的关系.结果表明动车组以350 km·h-1的速度通过半径为5 500,7 000和9 000 m的曲线线路时,动车组的垂向和横向振动加速度以及平稳性能均满足舒适度要求,而且脱轨系数和轮轴横向力也能满足列车运行安全性要求;钢轨支点的横向力表现为过超高时内轨侧大、外轨侧小,欠超高时外轨侧大、内轨侧小;钢轨、轨枕的垂向和横向加速度随速度增加明显增大,而道床和路基的垂向加速度变化不大;钢轨和轨枕的横向动位移和动态轨距扩大量随速度的增加而增大;相同速度下,曲线半径小的轨道振动相对较大.  相似文献   

8.
文章利用多体动力学软件SIMPACK建立了200 km/h速度等级机车动力学模型,分析了两种形式竖曲线的半径对垂向加速度、轮轨垂向力和轮重减载率的影响,并且根据现行铁道机车车辆动力学性能评定规范加以评价。结果表明:随着竖曲线半径的增大,车体垂向加速度逐渐减小,并趋于平稳,竖曲线半径对轮轨垂向力和轮重减载率影响较小;考虑轨道随机不平顺时,根据车体垂向加速度判断,凸形竖曲线略好于凹形竖曲线;随着半径的变化,机车轮轨垂向力和轮重减载率变化不大,且均属优良范围。  相似文献   

9.
高速列车在隧道内运行引起强烈的空气动力,本文给出隧道内瞬变压力的计算方法,对瞬变压力影响下接触网跨距的取值进行了有限元分析,并提出了跨距的合理取值.  相似文献   

10.
研究目的:高速铁路站场设计标准与常规铁路站场有很大区别,站场岔后曲线应满足较高的列车通过速度,以满足站场接发列车能力.本文采用车线动力分析方法研究高速铁路站场岔后曲线插入段和缓和曲线长度对行车动力性能的影响规律,探讨站场岔后曲线参数合理取值,为高速铁路站场设计参数提供理论依据.研究结论:根据舒适度条件,给出了不同通过速度条件下岔后曲线半径与超高匹配关系,以及不同岔后曲线半径条件下缓和曲线长度取值;对岔后曲线插入段和缓和曲线长度优化研究表明:通过岔后曲线夹直线长度应尽量避免取夹直线上车辆第一周期峰值衰减距离与定距之和,对于1200 m曲线,其夹直线不宜选取30 m;岔后缓和曲线长度超过50 m时,对车辆舒适性的改善不再明显.  相似文献   

11.
对于高速铁路,维护曲线的良好状态对于提高旅客舒适度、保障行车安全极为重要。利用轨道检测车实现高速铁路的曲线线型判别和曲线要素检测是线路养护维修工作的前提。本文提出了高速铁路大半径曲线参数检测算法模型,分析影响曲线检测的关键参数,给出其合适阈值,并用现场试验予以验证,最终得到一套可应用于高速铁路大半径曲线检测的方法。  相似文献   

12.
高速铁路轨道结构与参数分析   总被引:1,自引:0,他引:1  
范俊杰 《铁道学报》1993,15(4):80-86
文章在理论分析与计算的基础上,参照国外研究成果,对高速铁路轨道结构及线路参数进行了深入研究。特别是对高速轨道结构特点,无缝道岔设计理论与计算方法,轨道参数等方面提出了笔者的观点,为我国高速铁路的轨道结构和设计参数提供了部分理论依据和建议。  相似文献   

13.
鉴于高速铁路路基声屏障设置高度有增加的趋势,加之现行铁路行业声屏障通用参考图不能涵盖声屏障高度≥5 m的情况。为解决高速铁路路基段高度≥5 m的直立式声屏障设计问题,找出超高声屏障荷载取值和荷载组合的规律性。从高速铁路路基声屏障荷载分类、荷载计算入手,通过对影响水平荷载取值因素分析,系统阐述水平荷载取值全过程。对不同列车速度下,有车与无车两种工况计算所得的基本组合、标准组合的荷载效应进行分析,举例说明在5 m至12 m声屏障高度范围内,不同工况、不同荷载组合以及不同速度目标值下荷载效应的变化情况,给出柱顶水平位移分析、立柱根部弯矩和剪力等主要效应随高度变化的规律,并针对路基段超高声屏障结构设计中遇见的高路基、高抗震设防烈度等特殊情况提出设计建议。  相似文献   

14.
《中国铁路》2007,(12):75-75
日本铁路轨道构造标准规定,应当尽量避免缓和曲线上插入竖曲线。缓和曲线上,因为轨道面不平造成支撑的轮重减少,车辆走行安全性降低;竖曲线上,存在的上下加速度也造成支撑的轮重减少、压曲稳定性降低。两者重叠后安全性更为下降,所以必须避免。日本铁路竖曲线半径从舒适度的角度出发设定,上下加速度一般很小,可以认为竖曲线不影响走行安全性和舒适度。  相似文献   

15.
城际铁路引入中心城区和地下车站时,在困难条件下无砟轨道地段允许竖曲线(变坡点)与缓和曲线重叠设置。本文对比分析了竖曲线与缓和曲线的不同位置关系对行车平稳性的影响,并总结了相应的适应性措施,对于优化竖曲线与缓和曲线重叠设置提供了一种技术解决方案。研究结果表明:(1)竖曲线与缓和曲线总体上不应重叠设置。当确需重叠设置时,应对平竖曲线匹配条件予以严格限制;(2)变坡点处设凸形或凹型竖曲线,在不同位置与平面曲线搭配形成的空间线形几何形态各不相同,对车轮与钢轨的密贴性能、列车横竖向激扰震动的影响存在差异,进而影响行车平稳性;(3)竖曲线、缓和曲线间位置关系的合理搭配,有利于改善线路条件。  相似文献   

16.
目前国内已颁布多部轨道交通快线方面的设计规范和标准,也有多条速度超过 100 km/h的轨道交通运营线路,但各规范、标准和各线对于竖曲线半径取值的规定及应用情况不尽相同,技术标准也未统一。文章通过对上述规范、项目在竖曲线半径技术标准方面的梳理对比,分析速度 100 km/h 以上轨道交通快线竖曲线半径计算中竖向加速度等参数的合理取值范围,计算确定速度 120~160 km/h 轨道交通快线线路设计中竖曲线的半径,并根据车站站台长度确定车站端部竖曲线半径的合理取值。  相似文献   

17.
地铁高架岛式站台车站是高架线中常用的一种车站形式,其在使用功能、运营管理、建筑体量等方面均优于侧式站台车站。为科学合理地配置高架线岛式车站喇叭口曲线参数,从喇叭口曲线理论计算着手,结合地铁列车进出站的牵引加减速度特性,研究给出较为理想的喇叭口曲线取值,并开发出相应辅助设计软件,以期对相关工程提供参考与借鉴。  相似文献   

18.
基于SIMPACK动力学软件创建了适用于160 km/h市域快速轨道交通的车线动力学仿真模型,在不同竖曲线半径的纵断面线路上进行了仿真分析。结果表明:车体垂向加速度最大值随着竖曲线半径的增大而减小,两者成二次降函数关系;建议160 km/h市域快速轨道交通的车体垂向加速度允许值取0.17 m/s2,最小竖曲线半径取12 km。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号