首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以广东沿海强风区某在建中承式三主桁式大跨度钢拱桥为工程背景,通过风洞试验和理论分析,研究该桥梁施工状态和成桥状态风致响应特性。采用节段模型试验获得主梁、拱肋和拱脚的气动三分力以及主梁涡激振动特征,利用全桥气弹模型试验研究风致响应特征并与理论分析进行对比。研究结果表明:三主桁拱肋气动阻力大但是升力及扭矩小,不易发生静风失稳,拱脚气动力随风偏角变化显著;该桥主梁存在发生涡激共振的可能性,但振幅小于规范限值,且阻尼比达到1.0%时基本有效抑制了涡振;拱肋横风向抖振响应大,主梁竖向抖振响应大,施工状态拱肋最大位移达1.47 m,应合理选择施工期,避开台风期。  相似文献   

2.
为了深入研究大跨度公轨两用悬索桥的动力特性,以贵州省在建的马岭河三号特大桥为研究对象,基于Midas/Civil建立全桥三维离散单元有限元模型,采用子空间迭代法进行模态分析,得到该桥的自振频率和振型,并采用控制变量法,分析主塔刚度、主缆刚度、加劲梁刚度、吊杆刚度、恒载集度、中央扣和横向抗风支座等六类结构关键参数对其动力特性的影响。研究结果表明:该桥基频为0.172 Hz,对应振型为主梁1阶正对称侧弯,该桥自振频率较同等跨径的普通公路悬索桥高,结构整体刚度较大;增大主塔刚度,主塔侧向振动频率提高;增大主缆刚度,主梁1阶竖向振动和扭转频率提高;增大吊杆刚度,纵飘频率有一定程度提高;增大加劲梁刚度,主梁侧弯和主梁扭转振型频率的提高显著,有助于提高结构的横向刚度和改善结构的颤振性能;而增大恒载集度,以主梁振动为主的侧弯、竖弯、扭转振型的自振频率均有不同程度的降低;中央扣和抗风支座能有效提高结构的整体刚度。  相似文献   

3.
研究目的:钢桁斜拉桥具有"跨度大、阻尼低"的特点,桥位一般处于山谷或江河,气象条件比较复杂,抗风性能应重点研究。本文以南广铁路郁江钢桁斜拉桥为工程背景,对其抗风性能进行分析研究及风洞试验,计算该桥的气动参数、动力特性和三分力系数,进行主梁节段模型试验、独塔气动弹性模型试验、施工及成桥全桥气动弹性模型试验和斜拉索雨振节段模型试验,得出有关钢桁斜拉桥抗风性能的一些结论。通过计算分析和风洞试验,研究其风荷载和风致响应特性,为郁江主桥的抗风设计、运营和施工期间的抗风安全和使用舒适性评价提供依据。研究结论:(1)节段模型试验结果表明,郁江桥没有观测到明显的涡激振动现象,颤振稳定性有较大的安全储备;(2)裸塔气弹模型试验结果表明,裸塔结构未发生驰振,也没有发现有影响施工的大振幅涡激振动;(3)全桥模型试验结果表明,郁江桥主梁未发生颤振、横向屈曲、扭转发散等静力失稳现象,也未发现影响施工涡激振动和影响运营的大振幅抖振;(4)斜拉索风雨振动试验结果表明,光滑索阻力较小,但是容易发生风雨振动现象,表面压花及螺旋肋条的斜拉索能够避免风雨振动的发生;(5)本研究结果对铁路钢桁斜拉桥的设计有一定的参考价值。  相似文献   

4.
基于谱分解法的自锚式悬索桥桥梁风致抖振计算分析   总被引:3,自引:0,他引:3  
自锚式悬索桥是一种大跨度柔性结构体系,该桥型经受脉动风作用时容易发生较大的抖振响应,对于该种桥型进行风致抖振的研究探讨具有较强的实际意义。以自锚式悬索桥武汉汉江六桥为工程实例,进行风致抖振分析。具体分析流程为:通过计算流体力学软件对桥梁进行气动分析,得到桥梁抗风分析方程中的重要参数静力三分力系数。通过对桥址处风场资料的分析,采用规范规定的风谱密度函数,利用谱分解法将脉动风谱转换成脉动风时程,同时结合准定常气动理论将风时程转换成风力时程实现气动力的时域化。利用有限元软件建立桥梁的空间模型并分析自锚式悬索桥动力特性。通过自编数值程序和有限软件的结合将风力时程加载在桥梁模型上,实现桥梁在时程风力作用下抖振响应的数值模拟。其计算结果表明:该桥在风致抖振作用下性能良好,结构具有良好的气动性。结合计算流体力学软件、数值分析软件、有限元软件的桥梁抗风计算方法和模式,可以在其他自锚式悬索桥风致抖振计算中参考使用。  相似文献   

5.
为研究大跨度预应力混凝土连续刚构桥在不同施工阶段结构体系转变下的风致抖振气动性能,采用计算流体动力学的近壁面低雷诺数SST k-ω湍流模型,求解主梁与桥墩各关键断面的静风绕流气动力参数。通过谐波合成法模拟来流10 min下的主梁及桥墩节点脉动风速时程样本,并利用Scanlan准定常气动力模型,对在施工最大双悬臂、最大单悬臂及成桥合龙状态时主梁的风致抖振位移响应进行了计算。研究结果表明:主梁风致响应的主导外因随施工体系的转变而改变,结构体系的完善(整体刚度的增大)使得抖振气动效应逐渐减弱;最大双悬臂状态时,梁端节点横桥向抖振位移达到极大值5 cm,可能对施工监控产生干扰;主梁各节点转角位移相对于线位移受到的影响可忽略不计。  相似文献   

6.
以一大跨悬索桥——坝陵河大桥钢桁梁主梁断面为研究对象,通过节段模型风洞试验和高频动态天平测力试验,得到了钢桁梁主梁优化断面并试验得出三分力系数、颤振导数以及气动导纳,归纳出适合钢桁梁桥梁断面的气动导纳经验公式,改善了传统上计算抖振在气动导纳上的明显缺陷。研究成果已经应用于坝陵河大桥的建设,且可以为以后类似桥梁的抗风设计提供参考。  相似文献   

7.
为检验主跨3×340 m的挑臂式钢箱梁斜拉桥在施工阶段和运营期的抗风安全性,分别开展节段模型和全桥气弹模型风洞试验,模拟该桥在成桥状态和最不利施工阶段的风致响应.节段模型风洞试验结果表明:施工阶段和成桥状态下,该桥主梁的颤振临界风速均远大于颤振检验风速,未发生明显涡激共振.全桥气弹模型风洞试验证实在施工阶段和成桥运营阶段,实桥风速达到109.5 m/s时桥梁未发生颤振、扭转发散等静力失稳现象.增设抗风缆后,在各个试验风速下,均匀流场和紊流场中主梁竖向位移均方根最大减小幅度分别为84%和94%,扭转角均方根最大减小幅度分别为64.6%和53.8%,显著降低了施工阶段主梁风致响应,提高了桥梁施工安全性.  相似文献   

8.
无砟轨道高速铁路斜拉桥跨度较大,常采用箱形断面主梁,在桥梁建设和运营过程中涡激振动问题不可忽视。以阜淮高速铁路颍河斜拉桥为工程背景,对主梁断面绕流进行数值模拟以及流固耦合求解,研究主梁断面的气动力参数以及竖向涡振响应。针对可能出现的明显涡振进行气动优化,并分析涡振响应对列车行车稳定性的影响。结果表明:在0°、±3°和±5°五种攻角下主梁原始断面均出现了竖向涡振,最大竖向涡振振幅均较小;在+5°攻角下主梁原始断面出现明显的竖向涡振,在检修车轨道内侧加设导流板,可显著减小主梁断面的涡振响应;涡振时最大振幅对应列车行车安全性满足要求。  相似文献   

9.
文章基于大型通用有限元软件ANSYS提出了一种大跨度桥梁抖振时域实用分析方法。在该方法中,自激力是通过向有限元模型中添加气动刚度和气动阻尼单元的方式来实现的。计算了独塔斜拉桥在不同风速和攻角下的抖振位移响应,与传统频域分析结果的比较表明了该方法的可行性。  相似文献   

10.
悬索桥跨度大,柔性高,在车辆通过时,易发生振动。为了研究其车激振动问题,利用动力平衡原理和有限元法,建立车桥系统振动微分方程。以湘西矮寨大桥为背景,通过对桥面不平顺进行数学模拟,利用计算机软件ANSYS分析大跨度悬索桥在车流分别以不同速度和车重运行时主梁跨中位移、主缆、吊杆和腹杆的动力响应。研究结果表明:随着行车速度或车重的增加,结构响应通常增大,但主梁跨中横向振动位移随车速的变化具有不确定性;车辆运行参数对主梁竖向振动位移的影响显著;而对主梁横向振动位移的影响较小;结构动力响应对车速的变化比对车重的变化更为敏感。  相似文献   

11.
为确定移动荷载作用下曲线桥的动力学特性,以江西省某四跨连续曲线箱梁桥为实例,运用有限元软件ANSYS建立了该桥的有限元计算模型。计算了该曲线桥的自振频率以及在移动荷载作用下该曲线桥的竖向位移、扭转角、横向位移等的变化规律。同时将有限元数值计算结果与现场试验测试数据进行了对比,验证了该曲线桥有限元模型的正确性,在此基础上分析了车辆离心力、车辆载重、车速等参数对曲线桥动力响应的影响。结果表明,离心力使曲线桥产生朝向外侧的横向位移,使跨中扭转角变大;随着载重的增加,曲线桥跨中竖向、横向位移,扭转角以及支座反力呈线性增长;随着车速的增加,曲线桥跨中竖向位移先增大后减小,横向位移和扭转角逐渐增大,支座反力逐渐减小。  相似文献   

12.
研究目的:为检验双塔单索面部分斜拉桥的抗震性能,建立荷麻溪大桥的动力特性分析力学模型,运用有限元法进行动力特性与地震反应谱分析。采用标准反应谱作为输入的谱曲线,分别考虑纵向、横向和竖向输入下该桥的地震响应,研究地震作用下结构的内力和变形,分析该桥的抗震性能。研究结论:结构动力特性分析表明:荷麻溪大桥的1阶主振型为对称竖弯,因此大桥受竖向地震响应很大;桥的2阶振型为纵移,在纵向地震作用下,桥墩和主梁连接处将产生较大的弯矩和剪力。地震反应谱分析结果表明,主桥结构关键部位基本保持弹性,满足抗震设计要求。  相似文献   

13.
为研究大跨度铁路独塔混合梁斜拉桥结构参数对动力特性的影响,以岳口汉江特大桥为背景,利用MIDAS/Civil建立有限元模型,分析了边中跨比、结构自重和刚度、钢混比等参数及有无辅助墩和横向抗风支座对桥梁动力特性的影响。结果表明:该桥振型排列合理,耦合程度低;钢混比和边中跨比对主梁基频影响极大,辅助墩可以有效提高桥梁的整体刚度;无横向抗风支座对主梁振型影响较大,但对桥塔振型影响不大;主梁刚度和自重对本桥前3阶振型的振动频率影响显著;桥塔自重主要影响主塔侧弯和纵弯频率;斜拉索刚度主要影响主梁竖弯和主塔纵弯频率。  相似文献   

14.
以一座新建跨海铁路主跨364 m钢桁梁斜拉桥为背景,分析海洋强风对钢桁梁斜拉桥最大单悬臂状态下的影响,对比不同抗风措施下风致振动的抑振效果。结果表明:采用JTG/T 3360-01—2018《公路桥梁抗风设计规范》推荐的湍流场参数和单位气动导纳函数预测的抖振响应结果偏于保守,可用于大跨度桥梁初步设计阶段;实测湍流场参数可以很好地估计桥梁抖振响应,尤其是横桥向响应;测量桥址的风速对合理设计和施工海洋强风场斜拉桥具有重要意义;辅助墩、斜撑、调谐质量阻尼器和抗风拉索的减振效率依次递减;由于跨海大桥施工过程中增设临时墩会大幅提高建设成本,而斜撑方案只需要在主塔和墩附近设置临时钢结构的斜撑,不会大幅提高施工作业量,推荐采用斜撑方案。  相似文献   

15.
涡激振动是大跨度桥梁主梁在低风速下容易发生的一种风致振动现象,会影响行车安全性、舒适性和桥梁疲劳寿命,避免涡激振动的发生或抑制涡激振动振幅是桥梁抗风设计的热点问题。基于涡激振动对主梁气动外形敏感的特性,通过设计不同气动措施改善主梁的涡激振动性能,探究单个气动措施和多个气动措施组合的涡激振动抑制效果。以某π型开口截面斜拉桥工程为依托,对几何缩尺比为1∶37的刚性节段模型开展涡激振动研究,进行了风洞测振试验,并对下稳定板、检修车轨道位置和导流板等典型气动措施的抑振效果进行了测试。研究结果表明:主梁原设计断面存在明显的竖弯涡激振动现象,最大竖弯涡激振动振幅已超过规范限值;安装1道下稳定板可有效抑制竖弯涡激振动,安装多道下稳定板后,竖弯涡激振动振幅被限制,但同时会造成扭转涡激振动振幅增大,使用稳定板措施时应兼顾竖弯涡激振动和扭转涡激振动振幅的变化;检修车轨道的有无及位置变化对此截面的涡激振动性能影响较小,内移检修车轨道不能有效减小涡激振动振幅;在安装1道下稳定板的基础上增设导流板可进一步抑制涡激振动,安装下稳定板与导流板的组合措施可达到最优抑振效果。研究结果可为类似主梁断面涡激振动的气动控制措...  相似文献   

16.
接触网系统在短周期脉动风的作用下,会发生抖振现象,从而引起弓网受流的恶化。本文考虑作用在接触网上的水平与竖直脉动风和静风载荷,推导作用在接触网系统上的抖振力模型;采用Davenport谱和Panosfsky谱,运用谐波合成法分别模拟水平和竖直方向上的脉动风时程;利用有限元分析软件MSC-MARC建立弓网耦合模型,将抖振力施加到接触网模型中,分析接触网在脉动风下的风振响应,对脉动风作用下的弓网系统进行动态仿真,研究脉动风下接触网抖振对弓网动态受流性能的影响。研究结果表明:脉动风引起的接触网抖振对弓网受流影响很大,在研究接触网风振响应和弓网动态特性时,应综合考虑静风载荷和脉动风载荷的影响;脉动风攻角的变化对弓网受流影响明显,风攻角是研究风载荷下弓网受流性能时不可忽视的因素。  相似文献   

17.
研究目的:青山长江大桥主航道桥是目前世界最大跨径全漂浮体系斜拉桥,桥塔为目前世界最高的A形桥塔,主梁为目前长江上最宽的钢箱梁,其动力特性是结构受力特性的关键,与常规斜拉桥相比具有独特之处。本文采用ANSYS建立空间有限元计算模型,对青山长江大桥主航道桥成桥状态、施工阶段最大单悬臂状态结构动力特性进行分析,从而为进一步进行结构抗震、抗风性能分析研究奠定基础。研究结论:(1)在成桥状态时,结构前3阶振型分别为纵飘、对称侧弯、对称竖弯,对应周期分别为14.22 s、6.25 s、4.78 s;在最大单悬臂状态时,结构前3阶振型分别为侧弯、竖弯、竖弯,对应周期分别为8.4 s、4.44 s、2.93 s,两种状态均属于长周期结构;(2)成桥状态和最大单悬臂状态时,结构侧向刚度均偏弱,对横向风致振动响应敏感;(3)结构采用A形桥塔、超宽主梁、空间双索面提高了结构的扭转频率和抗扭刚度,增强了结构的抗扭稳定性,边跨设置辅助墩提高了结构频率和刚度;(4)在成桥状态时,结构的高阶振型中出现了振型的耦合现象;在最大单悬臂状态时,结构的低阶振型中即出现了振型的耦合现象;(5)本研究成果可为大跨度全漂浮体系斜拉桥结构抗震、抗风设计提供依据。  相似文献   

18.
为了解柔性中央扣对单跨悬索桥受力的影响,以宜昌庙嘴长江大桥为研究背景,建立该桥设置与不设置柔性中央扣的计算模型,进行结构静力和动力特性分析。研究结果表明:柔性中央扣对提高结构整体刚度影响较小,但对减小梁端纵向位移和降低跨中吊杆索力的作用明显,同时也能提高加劲梁扭转频率,增大相应频率出现的阶次,有利于提高桥梁的抗风稳定性。大桥成桥试验时,对结构的位移、内力、自振频率及结构振型进行了验证,试验结果与理论分析吻合较好。  相似文献   

19.
悬挂式单轨交通系统主梁通常为下开口钢箱梁,结构刚度小,车辆在风力作用下易发生横向摆动,从而 影响结构安全性和乘车舒适性。以某旅游专线项目 30 m 跨度简支段为工程背景,进行不同风速和不同车速下的 动力响应仿真分析。采用有限元软件建立桥梁模型,采用多体系动力学软件建立车辆和轨道模型,将车辆、轨道 系统和桥梁系统作为一个完整的系统进行联合仿真计算。采用 CFD 软件计算桥梁和列车的静力三分力系数和风 荷载,并将静风力叠加到模型中形成风-车-桥耦合振动模型。计算结果表明,桥梁的横向动位移和竖向动位移随 风速的增大而增大,横向位移变化更加明显,但随车速的增大,动位移变化不明显;车辆的平稳性随风速和车速 增大而逐渐降低,车辆的横向平稳性对平均风更加敏感;所有工况中,车辆的竖向和横向 Sperling 系数最大值分 别为 2.49 和 2.62,表明运行车辆具有良好的平稳性。基于通用有限元软件和多体动力学软件进行风车桥耦合动力 分析的联合仿真方法是可靠高效的;研究成果可为悬挂式单轨交通系统的抗风设计与应用提供参考。  相似文献   

20.
本文根据随机荷载激励下结构振动响应的频域分析理论,从作用在桥梁上的自激气动力和抖振气动力出发,推导了桥梁结构在空气动力作用下考虑静风压力的弯扭耦合抖振响应的计算公式,并通过实例分析了耦合和静风压力对结构抖振响应的影响。计算结果表明,静风压力和弯扭耦合对抖振响应计算有较大影响,在计算中应予以考虑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号