首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
为确保采用单洞双线且包含多个连续地下车站的粤东城际铁路隧道热环境满足设计规范要求,通过一维数值模拟方法,从行车对数、活塞风井面积、轨排风量及排热系统开启方案4个方面出发,对汕头至潮汕机场段中山路隧道热环境特性及控制方案进行研究。结果表明:不开启轨排系统下,初期、近期夏季晚高峰隧道内空气温度均不超40℃,但远期汕头一中、时代广场站及区间2温度不满足热环境控制要求,且远期中间车站区域温度明显高于两端车站;通过增大活塞风井面积降低隧道空气温度的作用有限,即使单个活塞风井面积增加至75 m2,区间2及汕头一中站温度仍超过40℃;车站轨排系统开启后,远期夏季晚高峰全线隧道空气平均温度降幅较明显,当单个车站轨排风量为50 m3/s且活塞风井面积不小于30 m2时,隧道内各区域温度及新风量均满足要求;优化后的轨排系统开启方案可行,建议远期夏季晚高峰仅开启汕头一中站及时代广场站的排热系统,以减少通风设备运行能耗。  相似文献   

2.
应用SES模拟分析软件,对北京新建轨道交通机场线火灾最不利情况--东直门站站台端部发生火灾时,通风空调系统的通风机运行及活塞风井开启状况各种可能的11种排烟模式进行了模拟分析.由数值模拟得出火灾时站台屏蔽门、活塞风井及区间排风机对车站、区间速度场的影响;分析得出东直门侧式站台火灾最佳排烟模式为仅需开启车站左端2台排热风机,同时车站屏蔽门完全打开,由活塞风井、车站出入口及区间隧道补入新风.  相似文献   

3.
对目前地铁工程中通常采用的全高不封闭站台门和封闭站台门以及封闭-非封闭转换式等三种站台门的优缺点进行了分析。以乌鲁木齐地铁某地下车站为例,基于气候特点等工程实际情况,对不同站台门方案,从其对应的通风空调系统设备初投资、长期运行能耗、解决区间隧道内的新风量需求、活塞风过站泄压问题等方面进行了综合比选,进而提出乌鲁木齐地铁站台门采用全高非封闭站台门的建议。  相似文献   

4.
余涛  雷波 《铁道建筑》2012,(6):70-73
针对莞惠城际铁路松山湖隧道的通风初步设计方案,建立隧道通风系统的网络模型,并对该隧道通风系统进行一维数值模拟计算分析。研究了取消车站轨道排热系统的可行性,得出取消车站轨道排热系统前后隧道内热环境都能满足设计要求,轨道排热系统的取消不但可以缩短工程周期,还能节省初投资和风机运行能耗;针对正常运行时部分活塞风井内风速超过工程限制,从而影响系统安全的情况,提出采用在活塞风道内增加局部阻力的措施,可使最高风速降到工程允许的范围内,系统的安全性提高。  相似文献   

5.
通过对重庆市轨道交通环线隧道通风系统的设计研究,结合山地城市地形地域的特征,综合分析轨道交通制式区间隧道通风系统的设计重难点。针对深埋地下车站隧道风机房布置、大断面暗挖区间通风量计算、地面及高架车站与隧道区间结合部位处理、隧道通风及烟控模式等问题进行梳理,归纳总结了山地城市轨道交通区间隧道通风系统的优化方案。  相似文献   

6.
基于有限体积法建立了地铁车站三维静态数值计算模型,对列车阻塞隧道时站台滑动门所受的活塞风压进行了计算研究;分别对单、双两种活塞通风条件下,不同活塞风速、阻塞比、滑动门位置对滑动门所受风压的变化规律进行了分析。结果表明,双活塞通风能够有效减弱活塞风对滑动门的风压;单活塞通风条件下,滑动门在最不利位置时,需克服的最大风压约为230 Pa。  相似文献   

7.
以重庆轨道交通6号线一期工程深埋的一段地下区间和车站为研究对象,其线路和车站埋深均在50 m以上。而目前国内地铁线路埋深多为30 m以下,多个车站连续埋深大于50 m的长区段较少见,由于其活塞风道长,阻力大,对于活塞通风效果能否满足规范要求,国内缺少类似工程可供借鉴的资料。由于工程中地面风亭设置难度大,深埋风井投资大以及长风井活塞效应减弱等因素,仅增加活塞风井并不是解决问题的最好方案,因此,设计应该在满足活塞通风效果的前提下,尽量优化通风配置,减少土建投资和规划协调的难度。对此段隧道的通风配置进行分析研究,通过模拟计算,分析活塞通风的效果,验证通风配置的合理性。  相似文献   

8.
广州地铁6号线的隧道通风设计   总被引:2,自引:2,他引:0  
广州地铁6号线穿越老城区,因此隧道通风设计的控制因素较多.通过简化和输入合理的边界条件和参数,运用SES程序对该线路进行计算,针对隧道内温度和风量进行分析.指出在现有配置隧道通风系统的情况下,深埋隧道内近、远期的全线温度满足要求;单端设置活塞风井的"活塞效应"作用较大,隧道区间换气量达到《地铁设计规范》规定,且增设消声器对活塞风道的作用影响不大,设计优化、合理.  相似文献   

9.
针对周边条件受限地铁车站进行取消活塞风井分析研究,结合广州某线路建立模型,利用SES程序对取消活塞风井车站前后区间正常、阻塞、火灾工况及影响因素进行模拟计算分析。分析得出如果取消车站所有活塞风井,在车站配置两台轨排风机,且轨排风机风量不小于60 m3/s时,利用前后车站隧道风机和该站轨排风机组织气流,正常、阻塞、火灾工况的模拟计算结果均能满足规范要求。实际应用时,需考虑线路客流对区间隧道温度的影响,必要时需采取降温措施。  相似文献   

10.
针对于地铁风井,以西安地铁2号线某车站为几何模型,采用软件仿真模拟研究了不同活塞风井形式对隧道的通风效果的影响,分析了不同风井形式对列车减速进站过程中的活塞风风量、轨底和轨顶机械排风量的影响规律。结果表明,列车在进站过程中,列车速度和列车与风井排风口的相对位置对活塞风井排风量影响显著,在风井倾斜角度变化后,对各类机械排风风量比例的变化影响不显著,并表明斜风井虽然能够解决某些特殊条件下的通风问题,但其在通风效果上与直风井相比较差。  相似文献   

11.
介绍广州地铁4号线的隧道通风系统方案——采用隧道风机变频兼作车站隧道排风机,只在出站端设置活塞风道。与传统的系统方案相比,该系统方案可以大量节省初投资,并可以避免因风机全压选择偏大所带来的运行费用的增加。分析该系统方案的设计原则、设备选型原则等,可供方案推广应用所借鉴。  相似文献   

12.
建立通风网络模型,通过模拟列车车头火灾下6种典型工况的通风排烟,着重分析不同位置隧道风机的开闭数量对通风排烟效果的影响。讨论了不同模式下的气流组织方向及风速特征值。分析模拟结果发现,开启起火隧道列车车头前车站风井的2台隧道风机正转排风、列车车尾后中间风井的2台隧道风机反转送风,同时开启未起火隧道侧2台隧道风机反转辅助送风,则通风效果最好。  相似文献   

13.
通过设置合理的边界条件和参数,运用隧道环境模拟计算程序,对广州地铁6号线的隧道通风设计进行计算,并针对隧道内温度和风量进行了分析。在合理配置隧道通风系统的情况下,深埋隧道内全线温度满足要求;活塞效应作用较大,且隧道区间换气量满足要求。  相似文献   

14.
列车在地下运行时,新风从隧道内引入,因而隧道内空气颗粒物的体积质量会严重影响列车车厢内空气的质量,而目前国内外对地铁隧道内空气中颗粒物的研究非常少。采用实地测试的方法,获取了地铁隧道内空气中各粒径颗粒物的体积质量数据,并分析了各粒径颗粒物体积质量的相关性,相关程度高则说明来自同一个来源。结果表明,地铁隧道内空气中颗粒物的粒径分布中,细小颗粒占了主要成分;不同粒径颗粒物体积质量之间高度相关,列车车厢内空气中不同粒径颗粒物体积质量之间高度相关,车站站外空气中不同粒径颗粒物体积质量之间中度相关;隧道内、列车车厢内、车站站外空气中的同种粒径颗粒物体积质量之间也高度相关。  相似文献   

15.
为分析高铁隧道及地下车站活塞风效应,采用经三维CFD数值模拟验证后的一维数值模拟计算方法,建立京张高铁八达岭隧道及半高安全门地下车站通风网络模型,计算不同工况下进出站人行通道风速,并评估通道内人员安全性。结果表明:一维数值模拟方法能准确预测咽喉区气流分布及通道风速;列车正常运营产生的活塞风直接影响站内气流,进出站人行通道内风速最高可达8.3 m/s;风速最大负值出现在两个区间分别有列车往隧道外以最大速度行驶时,风速最大正值出现在两个区间分别有列车以最大速度进站并在车站附近会车时;单车越行和两车会车时,通道内最高风速分别可达4.6 m/s和7.6 m/s;通过人员安全性分析,得到本模拟计算的通道内最大风速8.3 m/s在安全范围内,只是部分人员感觉不舒适。研究结果可用于高铁地下站通风系统的安全和舒适设计。  相似文献   

16.
射流风机与洞口风道组合通风效果一直是学术界和工程界关注的关键科学问题,在长度超过5km的内燃牵引隧道中,射流风机并未有效阻止风流从洞口隧道内流出,未达到设计通风效果。采用CFD计算软件FLUENT建立三维非线性力学模型,研究洞口射流风机安装断面连接方式、轴流送风口风速、射流风机台数关键因素影响效果。射流风机安装处设置渐变过渡段后,风机吹出的风流可以平稳的进入隧道,从洞口引入新风效果明显;在同样的风量下,送风口风速不同,产生阻力也不同,对洞口端引入新风产生影响,设计中应适当降低送风口风速;在洞口设置同样的射流风机,轴流送风道送入的风量不同,洞口端隧道内风流的状态不同,当送风量大到一定程度时,将产生洞口段隧道风流流出,设计中洞口射流风机的台数应根据送风道的送风量进行调整。  相似文献   

17.
采用全尺寸热烟试验方法在深圳地铁莲花北站至少年宫站区间隧道进行机械排烟试验,测试位置位于正线隧道与联络线隧道交汇处以及马蹄形隧道单洞双线与马蹄形隧道单洞单线的交汇处。模拟车头、车尾火灾进行排烟,相邻车站隧道风机进行辅助排烟,测试各种排烟模式,观察各种防排烟模式下的排烟效果;研究复杂线路交汇处隧道烟气运动、蔓延情况和设备的工况,并测量和记录风速等数值。实验结果可对隧道防排烟设计、火灾控制提供数据支持,并为列车中部着火且停在隧道内提供疏散方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号