首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究城际铁路纵向承台式无砟轨道扣件系统关键参数取值,基于车辆-轨道耦合动力学理论,建立客车-无砟轨道-桥梁耦合动力学模型,分析扣件刚度、扣件间距对桥上无砟轨道系统动力响应的影响规律,并基于层次分析法,对桥上无砟轨道系统动力特性进行综合评价。结果表明:随着扣件系统刚度增大,钢轨垂向位移减小,车体振动加速度、轮轨垂向力、轮重减载率和桥梁振动加速度均增大;随着扣件间距的增大,轮轨垂向力减小,车体振动加速度、轮重减载率、钢轨垂向位移和桥梁振动加速度均增大;综合考虑轨道变形以及工程造价,建议扣件系统刚度为50~80 kN/mm,扣件间距为0.6~0.7 m。  相似文献   

2.
以直线电机地铁系统的特点和动力学特征为依据,通过建立直线电机地铁系统横、垂向车辆-轨道耦合动力学仿真模型,计算了不同的轨道结构形式(长枕埋入式与板式)和不同板下支承刚度和阻尼情形下,直线电机车辆与轨道结构的动力响应,并进行了对比分析.结果表明,长枕埋入式轨道结构的车体垂向加速度略大于板式轨道,而板式轨道的钢轨横向加速度以及钢轨垂向位移则要略大于长枕埋入式,板下阻尼值的增大有利于轨道板减振,板下刚度对轮轨力、钢轨位移和电机气隙影响较小,当板下刚度增加时,轨道板的位移值变小但轨道板的加速度值变大.  相似文献   

3.
重载铁路桥上无砟轨道动力学选型研究   总被引:1,自引:1,他引:0  
为给孟加拉帕德玛大桥铁路连接线桥上无砟轨道结构选型提供依据,基于车辆-轨道耦合动力学理论,建立重载货车-无砟轨道-桥梁耦合动力学模型,分析不同轴重货车通过桥上不同类型无砟轨道时的动力响应。结果表明:随着列车轴重的增大,桥上无砟轨道部件的动力响应明显增大;从降低轨道结构位移的角度考虑,优先选取现浇板式无砟轨道和单层长枕埋入式无砟轨道等单层无砟轨道结构;从降低轨道与桥梁的接触应力及桥梁振动加速度的角度考虑,应优先选取单元板式无砟轨道和长枕埋入式无砟轨道等双层无砟轨道结构。重载铁路桥上无砟轨道选型应综合考虑桥上无砟轨道的动力特性、线路特点及其与相关专业的接口等因素综合确定,相关成果可为重载铁路桥上无砟轨道选型提供参考。  相似文献   

4.
研究目的:采用少维修的无砟轨道结构是重载铁路长大隧道地段的必然选择,本文通过建立车辆-轨道耦合动力学模型,对不同车速、不同轴重、不同轨道结构、不同过渡形式下的系统动力响应进行对比,以确定出最佳轨道类型和过渡段类型,进而为无砟轨道在重载铁路隧道中的设计提供理论依据。研究结论:(1)车速增加对轨下结构的振动加速度影响较大;(2)随着轴重增加,除轮重减载率以外,其他各项指标均随轴重的增加而增大,且增幅较大;(3)长枕套靴式无砟轨道道床垂向应力较小,但脱轨系数大,道床垂向位移较大;双块式无砟轨道钢轨垂向位移小,但道床垂向应力、钢轨垂向力均较大;弹性支承块式无砟轨道脱轨系数和轮重减载率较小,道床垂向应力适中,利于重载铁路环境下铺设使用;(4)将有砟与无砟过渡段设置在路基上时,车辆运行的安全性指标控制得较好,并且因冲击而产生的钢轨加速度明显减小,且扣件的支反力也明显减小;(5)本研究成果对开展重载铁路无砟轨道结构设计具有参考价值。  相似文献   

5.
合成轨枕式无砟轨道结构垂向动力特性分析   总被引:1,自引:0,他引:1  
通过合成轨枕式无砟轨道结构的半车—轨道垂向耦合动力学模型,研究了焊接不平顺激励下,扣件刚度、枕下支承刚度等对结构垂向动力特性的影响。分析表明:扣件刚度、阻尼及树脂砂浆弹性模量对行车安全性及平稳性影响不大。扣件刚度增加,对轨道系统的动力特性有一定影响,其中钢轨位移减少最为显著;扣件阻尼增加后,钢轨垂向振动加速度明显减小;树脂砂浆弹性模量增加,轨枕垂向振动加速度减小显著,钢轨垂向振动加速度增加。  相似文献   

6.
为分析45 t轴重重载铁路有砟轨道扣件系统刚度合理取值范围,首先,使用钢轨容许应力法及轨道容许变形法分析扣件系统静刚度合理取值范围;然后,建立45 t轴重重载货车-有砟轨道空间耦合动力学模型,以美国五级谱及钢轨焊缝不平顺作为该耦合系统激励,通过分析车轨耦合动力学模型在不同激励、不同动刚度下的动力响应变化,分析扣件系统动刚度合理取值范围。结合钢轨容许应力法及轨道容许变形法,建议扣件系统静刚度范围为200~240 kN/mm;通过综合比较最大轮轨垂向力、最大枕上压力、最大钢轨垂向位移及最大轮重减载率4个评价指标在不同轮轨系统激励及不同扣件系统动刚度下的变化范围,建议扣件系统动刚度范围取240~300 kN/mm。  相似文献   

7.
研究目的:无砟轨道结构的弹性主要来源于扣件系统,在高速铁路无砟轨道施工或维修过程中,扣件系统可能出现安装不当或新旧轨下垫板不合理过渡的情况,从而在相邻的扣件间形成较大的刚度差或称刚度突变,静态条件下难以发现,但可能对高速行车的平稳性和安全性产生不利的影响。本文应用轮轨系统动力学理论和ANSYS/LS-DYNA有限元软件,建立了车辆-无砟轨道-路基系统垂向耦合振动模型,根据扣件刚度实际检测的范围,考虑不同的扣件刚度突变工况,计算分析扣件刚度突变对高速车辆及轨道动力特性的影响。研究结论:经过计算分析表明:(1)当扣件刚度局部发生突变时,车体加速度最大值和最小值基本不变,即扣件刚度突变对行车平稳性的影响不大;(2)扣件刚度突变对轮重减载率即行车安全性的影响明显,尤其是列车速度超过300 km/h时,扣件刚度突变直接导致轮重减载率超标;(3)该研究成果可为高速铁路无砟轨道扣件刚度在施工或维修中加强检测、建立严格的控制标准提供理论依据。  相似文献   

8.
基于CRTSⅡ型板式无砟轨道关键参数对行车安全的影响,指导轨道结构的优化,利用有限元方法和轮轨系统耦合动力学原理,建立车辆-轨道-路基系统垂向耦合动力学模型,研究轨道结构关键参数对列车的振动特性和轮轨垂向作用力的影响规律。研究结果表明:轨道板厚度对行车平稳性基本无影响;当扣件刚度从20 kN/mm增加到100 kN/mm时,轮对和转向架的振动加速度分别增加43.94%和7.98%,轮轨垂向力增加29.83%;扣件阻尼从20 kN·s/m增大到100 kN·s/m时,轮对和转向架的振动加速度分别减小21.64%和7.09%,轮轨垂向力减小9.48%,车体变化不大;为保证行车的安全性和平稳性,扣件阻尼和混凝土支承层厚度应尽可能取较大值。  相似文献   

9.
采用动柔度思想,通过建立高速列车-无砟轨道-桥梁系统垂向耦合频域分析模型来求解在单个或连续多个扣件失效下无砟轨道-桥梁系统的动柔度幅值、相位和纵向衰减率,对比分析无扣件失效、单个扣件失效及连续扣件失效等工况对系统在较宽频范围内动力学响应的影响规律。研究结果表明:无砟轨道结构其支撑的连续性在扣件失效下遭到破坏,钢轨、轨道板、底座层和桥梁的动力学响应增量明显;随着扣件失效数目的增多,各结构的动柔度幅值增长明显,其最大主频前移;由于扣件失效造成钢轨纵向衰减率在较高频段时相对减弱,且相位角提前出现跃升现象;轮轨接触力最大幅值由于扣件失效而略微降低,在车体激励下的钢轨加速度整体向低频移动;计算结果显示,扣件连续失效对系统频域下振动响应影响明显,严重影响桥上无砟轨道几何形位,对行车安全形成一定隐患。  相似文献   

10.
研究目的:高速铁路预应力桥梁会出现徐变上拱,而高速铁路对线路平顺性要求高,预应力桥梁徐变上拱引起的不平顺对高速列车-纵连板式无砟轨道-桥梁耦合系统有何影响,是工程界十分关注的问题。本文基于列车-轨道耦合动力学理论,建立考虑无砟轨道-桥梁系统各部件间接触状态非线性的高速列车-纵连板式无砟轨道-桥梁三维有限元耦合动力学模型并进行相应验证,运用所建模型,对列车在桥上纵连板式无砟轨道线路桥梁徐变上拱地段高速行驶时耦合系统的动力特性进行研究,旨在探讨其影响规律。研究结论:(1)桥梁徐变上拱对车体振动加速度影响非常显著,对桥梁振动加速度虽有影响,但不太显著;(2)桥梁徐变上拱对最大轮轨力、钢轨最大正弯矩、扣件最大拉力、轨道板和底座板纵向最大拉应力、CA砂浆最大压应力均有一定的影响,但影响规律不一,对最大轮轨力影响比较小,而对钢轨最大正弯矩、扣件最大拉力、轨道板和底座板纵向最大拉应力、CA砂浆最大压应力影响则比较大;(3)桥梁徐变上拱引起的无砟轨道-桥梁间局部脱空对高速列车-纵连板式无砟轨道-桥梁耦合系统动力特性有显著影响;(4)本研究成果可为高速铁路桥上纵连板式无砟轨道线路徐变上拱大小控制提供理论依据。  相似文献   

11.
运用弹性系统动力学总势能不变值原理及形成矩阵的"对号入座"法则,建立列车—板式无砟轨道—路基的竖向振动方程组,用Matlab编制相应计算程序,并用ANSYS软件验证,分析在随机不平顺激扰下,列车高速运行时板式无砟轨道不同纵向连接形式对列车—板式无砟轨道—路基系统振动特性的影响。研究表明:板式无砟轨道纵向连接形式对车体垂向加速度、钢轨垂向加速度、轮轨垂向力、扣件压力的影响极小,但对板式无砟轨道各部件及路基受力有较大影响,轨道板与底座纵连,可以大大降低轨道板和底座的振动和动应力,无砟轨道动力特性总体较为优良。  相似文献   

12.
本文运用车辆—轨道垂向耦合动力学,借助于ANSYS/LS-DYNA建立了车辆—轨道—桥梁垂向耦合模型.其中车辆子系统的车轮与钢轨之间采用轮轨接触,由赫兹非线性弹性接触理论确定等效线性接触刚度,选择焊接不平顺进行计算,文中选取0.60 m,0.62 m,0.64 m,0.67 m,0.70 m5种城市轨道交通高架桥上扣件间距的轨道结构进行动力学对比计算.研究结果表明,当扣件间距为0.67 m时,各项指标都处于波谷值附近,综合考虑车体加速度波峰值、钢轨的最大垂向加速度和位移、道床板的最大垂向加速度和位移,再结合以钢轨安全性为主,列车舒适性与经济效益为辅的原则,建议扣件间距取0.65~0.68 m.  相似文献   

13.
WJ-8型小阻力扣件轨下橡胶垫板滑出动力学研究   总被引:1,自引:1,他引:0  
基于轨下胶垫滑出后扣件支撑刚度减小和轮轨系统动力学基本原理,建立车辆-轨道-桥梁垂向耦合动力学模型,计算分析轨下胶垫滑出对车辆与轨道结构的动力学性能的影响,得出以下结论:(1)随着轨下胶垫滑出量的增加,车辆与轨道结构的振动加速度、钢轨与道床板的垂向位移、最大轮轨力、减载率均有增大趋势;最小轮轨力有减小趋势;且随着轨下胶垫滑出量的增加,车辆以及轨道结构的动力学指标的变化趋势逐渐增大。(2)基于车辆以及轨道结构的动力学指标,轨下胶垫滑出量不宜大于120 mm。  相似文献   

14.
弹性长枕无砟轨道垂向动力学计算分析   总被引:2,自引:0,他引:2  
建立弹性长枕无砟轨道的梁—梁—板模型,计算垂向位移、加速度与行车速度的关系,扣件瞬时上拔力与行车速度的关系,垂向位移、加速度与扣件、枕套和路基刚度的关系,垂向位移、加速度与长枕、道床板质量的关系等;分析无砟轨道弹性长枕在不同扣件、枕套、地基刚度和不同弹性长枕、道床板质量下的动力响应;找出扣件、枕套、地基刚度及弹性长枕、道床板质量与垂向速度、加速度、轨枕侧滚等的关系。在弹性长枕、道床板质量和扣件、枕套、地基刚度不变情况下,计算列车不同速度下各垂向动力响应,找出列车速度与垂向位移、加速度的关系。  相似文献   

15.
为研究扣件胶垫温变特性对车辆、轨道和桥梁的振动影响规律,以高速铁路WJ-7型扣件胶垫为研究对象,通过其动态力学性能试验得到不同温度下扣件的动参数,然后代入建立的车辆-轨道-桥梁耦合振动时域模型中进行分析.研究结果表明:扣件的动刚度和阻尼随温度降低而增大,低温时更为显著.从时域响应来看,当温度降低时,车体加速度和桥梁位移基本无影响,轮轨力、扣件力、轨道板加速度和桥梁加速度增大,钢轨的位移和加速度则减小.从频域响应来看,当温度降低时,轮轨力和扣件力在低频基本无变化,轮轨力主频向高频偏移且峰值增大,扣件力中高频峰值明显增大.钢轨在8~100 Hz范围内振动减弱,在125~315 Hz振动加剧,轨道板在80~400 Hz振动加剧,桥梁在80~250 Hz振动加剧.  相似文献   

16.
为研究扣件胶垫温变特性对车辆、轨道和桥梁的振动影响规律,以高速铁路WJ-7型扣件胶垫为研究对象,通过其动态力学性能试验得到不同温度下扣件的动参数,然后代入建立的车辆-轨道-桥梁耦合振动时域模型中进行分析.研究结果表明:扣件的动刚度和阻尼随温度降低而增大,低温时更为显著.从时域响应来看,当温度降低时,车体加速度和桥梁位移基本无影响,轮轨力、扣件力、轨道板加速度和桥梁加速度增大,钢轨的位移和加速度则减小.从频域响应来看,当温度降低时,轮轨力和扣件力在低频基本无变化,轮轨力主频向高频偏移且峰值增大,扣件力中高频峰值明显增大.钢轨在8~100 Hz范围内振动减弱,在125~315 Hz振动加剧,轨道板在80~400 Hz振动加剧,桥梁在80~250 Hz振动加剧.  相似文献   

17.
研究目的:为研究CRTSⅡ型板式无砟轨道结构参数对高速车辆运行品质的影响,本文建立高速车辆-CRTSⅡ型板式轨道垂向耦合系统动力分析模型,将频率分析法与辛数学方法相结合进行求解,分析轨道板厚度、混凝土支承层厚度、扣件系统刚度和阻尼、CA砂浆弹性模量和阻尼对高速车辆频率响应的影响。研究结论:(1)轨道结构参数对车体、转向架振动的影响较小,对轮轨垂向力和轮对垂向加速度的影响较大;(2)轨道板厚度不宜过大或过小,若过大则在50~70 Hz范围内的轮对垂向加速度、轮轨垂向力的频率响应增大,若过小则在30~50 Hz范围内的频率响应增大;(3)在满足轨道结构强度的前提下,适当减小混凝土支承层的厚度,可降低轮对垂向加速度和轮轨垂向力;(4)在满足轨道几何形位和轨道动位移的前提下,采用小刚度、大阻尼的扣件系统,可降低轮对垂向加速度和轮轨垂向力;(5)本研究成果可为CRTSⅡ型板式轨道的设计提供理论依据。  相似文献   

18.
在对高速铁路钢轨波磨现场调查、测试的基础上,根据铁道车辆—轨道耦合系统动力学理论,建立高速铁道车辆—板式无砟轨道动力学数值分析模型,采用现场测试得到的高速铁路钢轨波磨数据作为系统激励,研究不同深度的钢轨波磨对高速铁路轮轨相互作用、车辆运行稳定性的影响。结果表明:不同深度的钢轨波磨虽不会改变轮轨力波动的相位特征,但随着钢轨波磨深度的增加,轮轨垂向作用力、轮重减载率和轮对振动加速度均有明显增加,而构架和车体的振动加速度增加很小,可忽略不计;高速铁路钢轨波磨虽不影响乘坐舒适度,但会加速车辆簧下部件的伤损和破坏。  相似文献   

19.
研究目的:目前,轨道刚度变化对车辆-轨道耦合系统频率响应的影响规律尚不明确,本文基于车辆-轨道耦合动力学理论,以既有提速线路为例,从频率角度,研究轨道刚度变化对车辆-轨道耦合系统振动响应的影响。研究结论:(1)轨道刚度的变化,对车体、转向架的振动影响较小,对轮对及轨道结构的振动影响较大;轨道刚度的增大,对27 Hz以下的低频振动基本无影响,27~70 Hz之间的中低频振动略有降低,100 Hz以上的中高频振动显著增大;(2)随扣件刚度的增大,轮轨力谱以及轮对、钢轨振动加速度谱的最大值均显著增大,且振动频率有向高频发展的趋势;(3)随道床刚度的增大,频率响应谱的最大值变化相对较小,轮轨力、轮对、钢轨和轨枕的振动频率向高频移动;(4)总体上看,扣件刚度对耦合系统振动响应的影响较大,在线路维修时应及时更换恶化的扣件系统,道床刚度变化的影响相对较小,其维修周期可适当延长;(5)该研究可指导轨道结构的优化设计以及轨道的养护维修。  相似文献   

20.
运用能量法建立车辆—轨道耦合动力学模型,结合大秦线轨道结构力学参数,分别计算分析了45,50,60和75 kg/m共4种钢轨支承下轮轨系统各结构的动力响应,研究钢轨重型化对轮轨系统动力特性的影响。研究发现:钢轨重型化对车辆系统的动力响应影响较小,而对轨道结构和路基的影响显著;随着钢轨质量及抗弯刚度的增大,车体位移、车轮加速度、轮轨力、钢轨位移、扣件力、轨枕振动位移及枕下支承力降低,车体加速度、钢轨加速度先增大后减小,轨枕加速度增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号