首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
石龙 《铁道建筑》2020,(1):7-10,43
为验证高速铁路32 m优化简支箱梁的设计参数、评估结构受力性能,开展了优化箱梁足尺试验梁的静载弯曲试验、开裂试验、重裂试验、2.0级破坏性试验。结果表明:足尺试验梁1.2级荷载作用下的静活载挠度,跨中应力,开裂荷载等级,重裂荷载等级均满足设计要求;2.0级荷载作用下箱梁裂缝形态和发展趋势正常,未出现混凝凝土压溃或钢绞线断丝情况,卸载后梁体变形和跨中裂缝基本恢复。总体上优化箱梁静载受力性能满足设计要求。  相似文献   

2.
介绍了客运专线32 m预制简支箱梁静载试验的方法,统计分析了12片箱梁静载试验的测试数据,结合理论计算对试验数据进行了分析.试验与理论分析表明,梁场施工质量优良,箱梁刚度和抗裂性满足规范及设计要求,静载试验结果可为客运专线箱梁的设计和施工提供参考.  相似文献   

3.
通过对驻马店特大桥(客运专线)31.5 m双线铁路预应力混凝土简支箱梁实梁上进行预应力束的管道摩阻试验,测试管道摩阻系数μ和偏差系数k,并与相关规范值进行比较和分析。试验结果可为施工过程中预施应力的调节提供依据,保证后续箱梁预施应力的准确。  相似文献   

4.
武汉天兴洲长江大桥北岸引桥(客运专线)32 m铁路简支箱梁采用后张法预应力体系,在实梁上进行预应力束的孔道摩阻试验,测试孔道摩阻系数μ和偏差系数k,并与相关规范值进行比较和分析。  相似文献   

5.
铁路32 m混凝土简支箱梁结构噪声试验研究   总被引:1,自引:0,他引:1  
以32 m单线和双线单室混凝土简支箱梁为对象,通过噪声试验、结构有限元和声学有限元分析,研究箱梁结构噪声的声辐射特性、峰值频率产生的原因及评价方法.结果表明:列车通过桥梁时,离箱梁表面较远处的噪声级起伏不大,可采用稳态算法简化分析;混凝土箱梁的结构噪声主要分布在250 Hz以下,且随频率的增加而迅速衰减,因此理论预测时可将250 Hz作为截止频率;单线和双线箱梁的2个噪声峰值频率分别为63和160 Hz,以及50和315 Hz,二者均在第1个峰值频率处达到最大声压级,且此峰值频率处的噪声具有明显的有调性;不同箱室尺寸箱梁的结构噪声声辐射差异较大,车速并不是噪声的第一决定因素;混凝土箱梁结构噪声的峰值频率出现在声辐射效率和振动响应均较大处,因此应避免结构振动模态和空腔声学模态重合而导致空腔共鸣引起的噪声被放大;建议修订铁路噪声相关规范时,考虑混凝土箱梁低频结构噪声的危害.  相似文献   

6.
铁路32m双线简支箱梁剪力滞分析   总被引:1,自引:1,他引:0  
用 4节点 2 4自由度的壳单元对某高速铁路双线简支箱型梁的剪力滞进行分析计算 ,对影响剪力滞的因素进行探讨 ,得出一些有意义的结论 ,以期对今后在箱梁设计中精细考虑剪力滞的影响有借鉴作用。  相似文献   

7.
我国客运专线各种标准梁型在实际应用之初均进行了实体箱梁的试验研究工作,以掌握结构的实际受力性能,对于保证箱梁的正常、安全使用起到了重要作用。以新建成灌铁路跨度32m预应力混凝土简支箱梁为研究对象,对梁端变截面处腹板在预施应力条件下的受力状态进行了计算分析和测试,对跨中等截面段腹板在模拟运梁车运梁通过工况下的受力性能进行了计算分析和静载试验。根据箱梁腹板受力性能试验研究结果,对箱梁的截面构造和预应力束布置进行了设计优化、完善,改善了腹板的竖向受力性能,静载试验结果表明在运梁、运营工况下箱梁能满足正常使用要求。  相似文献   

8.
以客货共线32 m双线简支梁为例,介绍了新版客货共线箱梁的设计修订内容,并开展了简支箱梁与简支T梁的经济性对比分析。对比了梁体主要工程用量、工程造价、运维成本及100年全寿命周期成本,发现简支箱梁的工程造价不高于简支T梁,运维成本低于简支T梁,考虑100年的全寿命周期成本比简支T梁低27%左右。以沪通铁路和青连铁路为例,对比分析了简支箱梁方案与简支T梁方案的工程建设概算,可知采用简支箱梁节省了工程建设成本并缩短了建设工期。  相似文献   

9.
32m双线铁路简支箱梁管道摩阻试验研究   总被引:8,自引:2,他引:6  
通过对小凌河 32m双线铁路简支箱梁桥实梁上 9种预应力筋束的管道摩阻试验 ,采用最小二乘法进行分析 ,从而得到预应力筋束与管道间的摩阻系数 μ和偏差系数k。试验结果表明 ,实梁上测得的 μ值略大于规范值。  相似文献   

10.
高速铁路32m简支箱梁声辐射特性研究   总被引:3,自引:0,他引:3  
将列车-轨道-桥梁耦合振动理论与声辐射分析边界元法相结合,分析高速铁路32m单箱单室和单箱双室箱梁声辐射特性。结果表明:单箱单室箱梁动力响应均大于单箱双室箱梁,2种截面梁型在10~100Hz范围内振动密集,表现出结构局部振动特性,须采用板单元进行动力分析;箱梁结构噪声以低频为主,分布在小于250Hz频带内,适合采用边界元法求解;各场点声压级在梁底空间变化较小,距离每增加2m,声压级平均降低1.2dB,越靠近地面,声压级衰减越小;各场点声压级随与桥梁中心线距离的增大而减小,距离每增加9m,声压级平均降低3.7dB;距桥梁中心线25m处,各场点声压级随距地面高度增加而减小;行车速度为160~240km/h时,单箱单室箱梁比单箱双室箱梁声压级平均大14.2~4.3dB,速度越高,声压级差别越小。  相似文献   

11.
客运专线32m简支箱梁原位现浇施工技术   总被引:3,自引:3,他引:0  
依据地形地势,结合各种施工方案对比选择了钢管贝雷梁支架体系进行32 m简支箱梁原位现浇施工,同时阐述施工工艺特点及控制要点。  相似文献   

12.
通过分析何寨渭河特大桥跨度64 m预应力混凝土简支箱梁在200 km/h动力集中式电动车组、SS7D牵引的双层客车两种列车通过桥梁时,车辆系统和桥梁系统的动力响应,总结大跨度简支箱形梁桥的车桥动力特性,并验证该桥梁设计的行车安全性及乘坐舒适性。  相似文献   

13.
为了解跨度32 m整孔预制简支箱梁由制梁台座起吊时的开裂原因及裂纹位置,开展了现场调查、数值分析和监测研究.对36片经历一次起吊至存梁台座上的箱梁进行裂纹检查,所查梁体均有裂纹,其位置位于吊装孔附近箱梁腹板的内表面、靠近上梗腋部位.进行平衡起吊状态下箱梁受力行为有限元模拟,吊点附近截面腹板内侧的最大竖向拉应力为1.96...  相似文献   

14.
为满足海南东环铁路隧道区段预应力混凝土简支梁的运送要求,桥梁设计采用了双线组合简支箱梁。本文针对新设计的跨度32 m后张法预应力混凝土有砟组合简支箱梁,通过理论计算分析和现场试验,检验了箱梁的施工工艺以及在模拟施工、运营荷载下的各项受力性能,并针对试验过程中发现的问题提出了改进建议。试验研究表明,箱梁的制造工艺和刚度、抗裂性、自振频率等受力性能指标满足预制梁技术条件、设计和规范要求。试验研究工作为新梁型的工程应用提供了技术支持。  相似文献   

15.
通过介绍时速350km客运专线铁路无碴轨道双线后张法预应力混凝土简支箱梁静载试验过程,阐述了无碴轨道双线后张法预应力混凝土简支箱梁静载试验技术。  相似文献   

16.
通过介绍时速350 km客运专线铁路无砟轨道双线后张法预应力混凝土简支箱梁静载试验过程,阐述无砟轨道双线后张法预应力混凝土简支箱梁静载试验技术。  相似文献   

17.
为了对高速铁路跨度40 m和32 m简支箱梁建造技术进行对比分析,分别建立5跨40 m和32 m简支箱梁计算模型,从结构动力特性、车桥耦合动力响应两个方面,对两个计算模型进行对比研究,最后以一项工程实例为背景,从经济性角度对40 m和32 m简支箱梁方案进行对比。结果表明:对于5跨40 m和32 m简支梁计算模型,40 m简支梁模型的自振频率偏低,而梁体横向加速度和梁体位移比32 m简支梁模型偏大;墩高变化对两个计算模型的梁体横向加速度和横向位移的影响规律保持一致;对于25 m左右墩高的桥梁,采用40 m简支梁进行方案设计时,工程总造价比32 m简支梁方案偏低1.2%,并且下部工程造价明显低于32 m简支梁方案,墩高越高,这一优势越明显。  相似文献   

18.
19.
基于我国客运专线32 m箱梁现浇法施工支架并无固定的结构形式,均是按实际情况进行单独设计,为解决这一不足,有必要提出一种适用性强,易于施工且造价经济的支架结构形式。针对实际工程中应用的一种新型的现浇支架形式,对其进行荷载预压试验和有限元数值分析,通过理论与试验结果的对比分析,绘制该支架加载和卸载的荷载-变形曲线,验证了结构的合理性,得到其残余变形值,设计支架的预拱值调整方案,并提出改进措施,为该类现浇支架的结构完善和推广应用奠定基础。  相似文献   

20.
我国高速铁路桥梁以32 m预应力混凝土简支梁桥为主,在32 m简支箱梁结构优化设计的基础上,为提高设计精度、优化钢筋布置、节省钢材用量、降低施工难度,将BIM技术应用到32 m简支箱梁的钢筋优化设计中。基于BIM技术在铁路工程领域的应用研究,采用Bentley平台软件对优化后的32 m简支箱梁进行BIM建模,主要结论如下:(1)实现了精细化简支箱梁BIM模型,外部结构包含参数化箱梁主体、梁体孔道、吊梁混凝土块等细部结构,内部结构包含全部梁体钢筋、预应力体系和多种预埋件等结构,以三维可视化的方式将各结构之间的空间位置关系表达清楚;(2)采用软件的冲突校核功能进行钢筋碰撞检查,重点针对梁端处、梁截面变化段及预应力管道周围的钢筋进行优化设计,共节省钢筋用量1 281.59 kg,约占整孔箱梁钢筋用量的2.5%;(3)对箱梁的内部结构进行BIM模型还原与钢筋深化设计,提前解决施工难题,现场指导钢筋大样的制作、梁体钢筋的试拼与绑扎,显著减少施工过程中的钢筋安装问题,可为铁路简支箱梁的BIM技术应用提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号