首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高速铁路路基的不均匀沉降是影响高速列车平稳运行的关键因素,而造成路基不均匀沉降的一个重要原因是高速铁路沿线的地下水开采。本文基于PLAXIS 3D对高速铁路沿线抽水井降水导致的路堤沉降进行数值仿真分析。结果表明:抽水后场地的沉降和孔压均呈漏斗状分布;停止抽水后土体发生回弹,回弹后的沉降值形成一条稳定的曲线。路基中部沉降量可作为判断抽水井危险性的指标。  相似文献   

2.
研究目的:针对高速铁路无砟轨道桥梁基础(桥墩)变形引起桥上轨道附加不平顺,进而对列车运行产生影响的问题,本文以单元板式无砟轨道系统为对象,分别建立轨道-桥梁上部结构-支座-桥墩数值仿真子模型,以及车辆-轨道耦合动力作用子模型,计算并分析桥墩不同变形模式和量值对高速铁路行车的影响。研究结论:(1)桥墩变形对行车的影响与列车速度有关,列车速度越高,其影响越大;(2)桥墩横向变形对行车的影响大于桥墩沉降所产生的影响,桥墩同时发生沉降和横向变形情况下,行车安全性主要受横向变形的影响;(3)桥梁跨径减小,各行车评价指标增大,尤其当桥墩横向变形大于10 mm的情况下;(4)对于32 m标准跨径桥梁,桥墩沉降不超过20 mm,行车安全性和舒适性指标均未超过限值,但是当桥墩横向变形达到15 mm时,列车高速运行下行车安全性指标已超过限值;(5)该研究结论对高速铁路桥梁基础变形的管理与控制具有一定的指导意义。  相似文献   

3.
研究目的:本文以某大面积深基坑为工程背景,该基坑邻近既有高速铁路桥梁及路基段,为确保施工期间铁路运营的安全性、降低施工风险,文中依据现行规范建立合理的高速铁路安全评估标准,经有限元模拟,分别对高速铁路路基及桥梁的沉降、相邻桥墩差异沉降、横向水平变形、纵向水平变形、轨道平顺性以及桥梁基础结构安全性等进行计算分析并给出合理的评价,从而确保基坑工程施工过程中高速铁路运营的安全性。研究结论:(1)高速铁路路基、桥梁叠加初始设计值后,各施工阶段的累积沉降值满足规范中15 mm、20 mm的限值要求;(2)高速铁路桥梁叠加初始设计值后的累积差异沉降满足规范中4 mm的限值要求;(3)叠加初始设计值后,各施工阶段横向水平变形均小于规范限值15.75 mm,纵向水平变形均小于规范限值28.06 mm;(4)在整个施工过程中,正线桥梁单桩承载力值均满足单桩容许承载力要求;(5)该研究成果可为邻近高速铁路的深基坑开挖等类似工程领域提供借鉴。  相似文献   

4.
对临近某高铁立交工程的基坑开挖、顶进施工、U形槽开挖过程对高铁桥梁的影响进行分析研究。以封闭式路堑下穿高铁桥梁段为背景,采用大型通用有限元软件ABAQUS建立结构的三维数值模型,模拟由基坑开挖、下穿框架桥结构顶进至U形槽开挖的完整开挖过程,对比分析常规防护方案和加强防护方案对高铁桥梁的影响。分析结果表明:常规支护加固开挖时,桥墩基础处土层最大横向位移影响值为0.5 mm,桥墩基础处土层最大竖向位移影响值为0.8 mm;加强型支护加固开挖时,桥墩基础土层最大横向位移影响值为0.15 mm;桥墩基础处土层最大竖向位移影响值为0.34 mm,加强防护措施可有效控制高铁桥梁的附加沉降量,确保高铁的安全运营。  相似文献   

5.
研究目的:邻近既有铁路桥梁修建新的建筑物,由于建筑物的基础对土层应力会产生附加应力,不可避免引起既有铁路桥梁基础发生变形.新建石家庄至济南客运专线济南西联络线特大桥下穿京沪高速铁路黄河南引桥,京沪高速铁路采用无砟轨道,为确保列车的运营安全,对轨下桥梁结构的沉降要求非常严格,需要对下穿方案引起京沪高速铁路桥梁沉降进行分析.本文石济客专下穿桥梁桥墩分别按实体墩和框架墩两种结构方案,采用Plaxis三维有限元程序对京沪高速铁路桥梁沉降影响进行分析,以确定影响最小的结构方案,稳定线路走向.研究结论:分析结果表明:(1)考虑新建桥梁引起的基础附加沉降,既有京沪高速铁路桥梁相邻墩最大不均匀沉降实体墩方案最大3.2 mm,框架墩4.3 mm,均在规定的5 mm以内,下穿方案可行;(2)实体墩方案影响最小,推荐石济客专桥梁采用实体墩方案;(3)适当延长新建桥梁的桩基础长度,可以进一步降低对既有高速铁路桥梁沉降的影响;(4)理论计算结果与实际会有一定的差异,对于下穿高速铁路的工程,应建立完善的监测方案和监测方法,并制定监测控制指标和预警值,确保工程实施中和实施后高速铁路运营的安全.  相似文献   

6.
梁体徐变与桥墩沉降是高速铁路桥梁两种典型长期变形,为探讨其联合作用对列车响应的影响,以高铁32 m混凝土简支箱梁桥为研究背景,通过建立车-桥系统耦合振动模型,开展徐变作用、徐变与桥墩沉降联合作用对桥上车辆动力响应分析,对比单墩沉降、相邻双墩沉降和相邻三墩沉降3种沉降类型对列车动力响应的影响。结果表明:当桥梁考虑徐变时,车辆竖向加速度较不考虑徐变工况增大6.8%;考虑徐变与桥墩沉降联合作用,随着桥墩沉降量增大,车辆竖向加速度均明显增大,当单墩、相邻双墩和相邻三墩沉降达50 mm时,车辆竖向加速度较仅考虑徐变时分别增大76.8%、62.7%和33.8%;考虑5 mm徐变上拱,当单墩沉降量为30 mm,或当相邻双墩、三墩沉降量为40 mm,车辆竖向加速度超过规范1.3 m/s2的限值要求。  相似文献   

7.
为探测京津冀地区高速铁路沿线区域的不均匀沉降,利用基于合成孔径雷达干涉的干涉点目标时序分析技术,借助C波段SAR卫星序列在2015年11月至2018年3月间获取的51景降轨影像数据,提取研究区域的地表形变信息,结合地下水的动态变化及人类活动相关资料对沉降漏斗的演化态势进行归因性分析,并对该区域高速铁路沿线地表沉降监测及时序演化态势进行分析。结果表明:研究区域的年沉降速率为20~206mm·a^-1,漏斗中心最大累积沉降量达248mm,其中,区域内3条高铁沿线均存在明显的沉降,沉降速率均超过100mm·a^-1,最大值位于高铁路线的雄安县段,漏斗中心沉降速率达185mm·a^-1,累积沉降量为200mm;研究区域的整体沉降趋势稳定,沉降主要归因于人类活动,而高速铁路沿线的沉降与地下水开采密切相关。  相似文献   

8.
桥梁基础沉降是高速铁路桥梁在运营过程中的主要问题之一,过大的沉降直接影响车辆运行安全性和舒适性。为研究不同桥梁基础沉降形式和沉降量对车-桥耦合振动性能的影响,建立10跨高速铁路32 m典型简支梁桥有限元模型,开展无沉降、单墩沉降、相邻双墩沉降和相邻三墩沉降4种工况的车辆动力响应对比分析。另外,研究10~50 mm内5种沉降量对车辆动力响应的影响。结果表明:对于单墩沉降工况,当沉降量大于20 mm时,随着沉降量的增大车辆竖向加速度明显增大,当沉降量为50 mm时,车辆竖向加速度较无沉降工况增大了1. 2倍;对于相邻双墩沉降工况,车辆动力响应总体上比单墩沉降工况小;相邻三墩沉降对车辆竖向加速度影响显著,当相邻三墩沉降量分别为10,20,30 mm时,车辆竖向加速度比单墩沉降工况更大。研究结果可为确定基础沉降控制限值及线路抬高量提供参考。  相似文献   

9.
研究目的:地下水开采是引发地面沉降的的主要原因,且集中抽水引起的不均匀沉降会对高速铁路工程造成严重危害。因此,研究水井抽水引起地基变形过程,合理估算地基沉降范围,用以指导地面沉降区内的高速铁路选线及采取可靠的防治措施。研究结论:(1)基于离心模型试验结果,采用数值模拟方法模拟分析了不同深度条件下水井抽水引起地基沉降的规律和影响范围,模拟结果表明靠近抽水位置区域的地基变形大于远离水抽水位置区域,排水引起的地基沉降量与其不均匀程度随着排水次数和沉降的增大有逐渐减小的趋势;(2)不同深度抽水时引起地面沉降过程及影响范围有所不同,浅层抽水时不均匀沉降较为严重,影响范围较小,深层抽水时地基沉降较平缓,但影响范围较大;(3)承压水单井稳定流抽水引起的地基变形影响范围与含水层渗透系数负相关,与开采量正相关,若控制地下水开采量,其变形影响范围是可以控制的,一般不会超过1 000 m;(4)当高速铁路经过地面沉降易发区时,需采取绕避集中抽水区域、封井、禁采、限采及控制地下水开采量等多重措施;(5)该研究成果可指导高速铁路选线和铁路沿线地面沉降防治等领域。  相似文献   

10.
由于土体挖除、管片和二衬的设置,盾构施工过程中周围地层土体的初始状态会受到影响,导致上部结构产生不均匀沉降及横向位移,影响桥梁运营。结合盾构下穿既有线工程,采用Midas/GTS软件对盾构下穿结构进行建模计算,分析施工引起的桥墩和桥台的沉降特征。结果表明:地铁盾构掘进过程中右桥洞东2号-北侧桥墩(第32步开挖)沉降最大,为6.8 mm;相邻墩台的最大沉降差产生在右线开挖过程中西0-西1、西1-西2、西2-东2墩台(第32步开挖)开挖结束时,为2 mm。在此基础上提出下穿施工时维持桥梁稳定应满足的技术指标:墩台均匀总沉降量小于25 mm,相邻墩台的纵向沉降差小于2 mm,同一墩台的横向沉降差小于3 mm,墩台的水平位移小于3 mm。  相似文献   

11.
为保证高速铁路运行安全,必须在运营阶段加强桥梁的监测,并对桥梁的变形作出预测。本文结合津秦客运专线桥梁区段地基沉降监测,采用双曲线法和卡尔曼滤波法对桥墩的沉降预测进行了理论研究,并与同一组桥墩沉降观测数据进行对比,说明采用卡尔曼滤波法进行预测的结果符合墩台沉降变形规律,能比较准确预测桥墩的最终变形。  相似文献   

12.
研究目的:我国中东部平原地区高铁沿线分布大量的农业灌溉井,季节性大量抽取地下水用于农业灌溉将导致临近的高速铁路发生沉降,直接威胁高速铁路的平稳安全运营。本文针对某高铁区段范围内的农业灌溉井周期性抽水问题,通过建立考虑加卸荷下土体硬化特性的三维数值仿真模型,模拟分析农业灌溉抽水引发的高铁沉降影响以及农业灌溉井位置和开采模式优化调整措施的防治效果。研究结论:(1)临近高铁的灌溉群井短期大量抽水将产生沉降叠加效应,对高铁造成较严重的沉降影响;(2)将开采井群位置调整至远离高铁后,高铁沉降速率和最终沉降减小,沉降漏斗趋于平缓,差异沉降量显著降低;(3)在保持地下水总开采量一定的情况下,采用"相对较长的开采时间+较低的开采速率"开采模式后,高铁沉降速率和最终沉降减小,沉降漏斗趋于平缓,差异沉降量显著降低;(4)本研究成果可应用于平原地区农业灌溉抽水引发的沉降影响评估及防治。  相似文献   

13.
通过杭甬铁路客运专线柯桥特大桥单桩静载试验,桩身应变、桩身压缩量及桥墩沉降的测试,研究深厚软土地区桥梁桩基的荷载传递特性及沉降控制效果。结果表明:桩侧摩阻力先于桩端阻力发挥作用;尽管桩端置于强风化凝灰质砂岩上,但在试验荷载下2根超长试验桩的端承比均小于1.5%,桩的承载特性表现为摩擦桩的性质;单桩静载试验实测的桩身压缩量占桩顶沉降量的85%以上;桥墩浇筑完成后经过753d的沉降观测,2个试验墩实测沉降量分别为3.00和3.41mm,其中,无砟轨道铺设后300d的实测沉降分别为0.11和0.25mm,表明在深厚软土地区采用超长钻孔灌注桩控制桥梁基础沉降的效果显著。  相似文献   

14.
一在建高速铁路简支桥梁上轨道观测数据显示,连续5座桥墩均发生横向偏移,最大偏移量已达22 mm。本文结合桥梁地质资料,分析了相邻隧道弃渣对桥址岩堆体的影响及岩堆体的蠕动滑移对桥墩基础的破坏作用,提出了针对性的处理措施,保证了桥梁结构的安全。研究结果可为以后的设计和施工提供技术参考。  相似文献   

15.
地面沉降对高速铁路桥梁工程的影响及对策   总被引:4,自引:1,他引:3  
研究目的:研究地面沉降在不同区域及不同发展阶段对不同结构类型桥梁的影响,提出适宜的防治对策与工程措施,供高速铁路勘测、设计及施工参考.研究结论:在抽水井附近及地面沉降的中心区域,不均匀沉降较为严重,对桥梁结构变形影响较大;在地面沉降的扩展区域内,地面沉降引起地层和桥体变形主要是竖向变形,虽然下沉量相对较大,但对桥梁结构变形的影响却不大;在地面沉降区内,表现为平缓的下沉,对高速铁路桥梁工程影响不大,但局部地段出现差异沉降较大的地段.因此在铁路工程建设中应合理选址,优化桥梁布置及结构形式,优先采用简支结构,并采取适宜的工程措施来增强铁路工程本身对地面沉降的适应性.  相似文献   

16.
超大型深基坑对高速铁路桥墩稳定性影响分析   总被引:4,自引:4,他引:0  
随着近邻高速铁路沿线房地产的开发,建筑基坑施工有可能影响到高速铁路桥梁、路基的稳定性,为了减小基坑开挖产生的不利影响,确保高速铁路行车安全,通过大型有限元软件计算以及现场位移、水位等实时检测手段进行稳定性分析,同时,研究了深基坑开挖及抽水过程对高速铁路桥梁桩基变形的影响规律及范围。结果显示,基坑自身的稳定性及其降水后的水位位置,对高速铁路桥梁桥墩的水平位移有着重要影响,且这种影响关系是复杂的,影响范围较大,因此,不能仅以基坑与高速铁路的距离是否在20m以上作为安全标准,而应根据基坑深度、大小以及需要降水的程度,结合其与高速铁路距离、地层土质力学参数等因素,综合评价其对高速铁路的影响。  相似文献   

17.
新建深汕高速铁路(深圳—汕尾)坪山东隧道沿线城市建筑密集,施工环境复杂,规划选线不当极易对城市规划建设产生巨大影响。本文结合地质环境提出两种线路方案,从通道条件、运行时间、工程经济三方面进行对比分析,确立最佳线路方案。在此基础上选取了三种典型工况,建立了盾构隧道近接高速铁路桥梁施工数值模型,研究既有高速铁路桥梁对城市高速铁路规划的影响。结果表明:沿厦深铁路方案的并行段落长且运行时间短,较为可行;埋深最大断面处邻近桥梁桩身最大位移为0.43 mm,距桥桩最近断面处地层最大位移为1.22 mm,邻近桩身最大位移为0.36 mm;在困难地段施作隔离桩可以有效控制桩基础变形。  相似文献   

18.
为减小U形槽基坑开挖施工对既有桥梁墩台、基础等的影响,对因空间条件受限引起的标准路基面宽度调整问题进行方案比选,通过内力计算确定边墙的有效计算宽度,给出基坑两侧支护兼隔离桩的设置参数。采用FLAC3D数值模拟软件建立三维数值模型,分析基坑开挖对既有高铁桥墩基础的变形影响。模拟结果表明,U形槽基坑开挖施工完成后,桥墩基础最大沉降为1. 9~2. 7 mm,水平变形为0. 4~0. 6 mm,相邻墩台沉降差为0. 8 mm,均在允许的限值内。  相似文献   

19.
高速铁路桥梁桥下新建公路工程的安全性分析   总被引:2,自引:2,他引:0  
新建公路工程下穿既有高速铁路桥梁工程时,公路施工和运营期间的恒载和活载作用会引起既有高速铁路桥梁基础的土层发生竖向和侧向变形,土层变形产生的附加应力引起既有高速铁路桥梁基础产生垂直沉降和水平位移,当上述变形超过规范要求时应重新确定下穿方案。结合某新建高速公路下穿已建成的大西高速铁路桥梁工程,从桥梁承载力、垂直沉降和水平位移等方面分析新建下穿工程引起的土层变形对大西高速铁路桥梁的安全影响,该新建公路工程以路堤占压铁路桥墩承台下穿大西高速铁路时,铁路桥墩桩基础的承载力和沉降均超出规范要求,新建公路工程实施时改为以公路桥的形式下穿大西高速铁路。  相似文献   

20.
为保证地铁沿线建筑物的安全,对近距离侧穿桥桩的地铁盾构施工,先通过有限元软件进行数值模拟,施工过程中从盾构姿态、掘进参数、同步注浆与二次注浆等方面进行分析与控制,地表隆降量最大值分别为0、-5.6 mm;桥桩隆降量最大值为1.1 mm、-0.7 mm;墩柱倾斜率最大为0.06‰,地表沉降值与桥桩沉降值均控制在目标值范围内,保证了盾构施工过程中桥梁的安全。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号