共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
信号交叉口延误一通行能力联合优化配时方法研究 总被引:1,自引:0,他引:1
分析了F—B配时方法延误计算模型的缺陷.证明了上海配时方法的结果是各个相位的饱和度为1.建立了延误-通行能力联合优化配时模型,以延误与通行能力之比最小为优化目标.应用分析表明:F-B配时方法使车均延误比现状减少了1.65s;上海配时方法使车均延误减少了8.15s,但通行能力降低了422pcu/h;联合优化配时法使车均延误减少了9.46s,通行能力保持了现状水平. 相似文献
3.
4.
为获得更好的单点固定信号配时方案,以交叉口通行能力最大和车辆平均延误最小为目标,以相位有效绿灯时间受限为约束条件,提出一种信号配时优化模型.使用大连市交通调查数据得到韦伯斯特配时方案和2种优化配时方案,采用交叉口通行能力、车均延误和饱和度评价了各种配时方案.利用VISSIM软件进行了交通模拟试验,采用累计通过车辆数、车均延误和平均排队长度对各种方案进行了交叉口评价.结果表明,所提出的配时优化模型优于韦伯斯特配时模型,而且其评价结果更能反映交叉口的实际服务水平. 相似文献
5.
考虑动态红灯排队消散时间的改进MAXBAND模型 总被引:2,自引:0,他引:2
通过分析上游交叉口的驶出车流图式的变化规律,得到下游交叉口红灯排队消散时间与相邻交叉口相位差之间的函数关系,推导出动态红灯排队消散时间模型.并将动态红灯排队消散时间模型与传统MAXBAND模型相合,考虑绿波带控制中红灯排队消散时间随相位差的动态变化,建立了改进的MAXBAND模型.将改进的MAXBAND模型进行变量代换,使其仍然可用传统的混合整数线性规划方法快速地求解.示例路网的计算结果与仿真分析表明,由于考虑了红灯排队消散时间的动态变化,改进的MAXBAND模型较原模型具有更好的控制效果,处于绿波带中的车队不会因下游红灯排队车辆未消散完毕而产生停滞,实际有效绿波带宽增加31.6%,主干方向车辆平均延误减少12.6%. 相似文献
6.
基于相邻信号交叉口交通流的到达特性, 分析了干线协调控制的内在机理, 根据下游交叉口排队状态, 考虑头车与尾车到达时信号状态为绿灯的约束条件, 建立了无排队、一次排队、二次排队状态下的相位差模型, 研究了相位差与排队长度、绿灯时间和周期的定量关系, 考虑干线各交叉口间的关联性及交通需求与供给的关系, 提出干线周期、相位相序、绿信比的优化策略, 选取青岛市滨海大道沿线13个信号交叉口进行案例分析。计算结果表明: 实施双向绿波协调控制方案后滨海大道由东向西方向的总旅行时间由779s变为564s, 减少27.5%, 总停车次数由6次变为2次; 由西向东方向的总旅行时间由806s变为592s, 减少26.5%, 总停车次数由5次变为2次, 因此, 相位差模型及其优化策略对车辆旅行时间、停车次数的优化效果显著, 相位差模型具有可行性与实用性。 相似文献
7.
8.
基于仿真的干线协调控制分析指标 总被引:1,自引:1,他引:0
吴震 《武汉理工大学学报(交通科学与工程版)》2009,33(2)
讨论了协调控制方案评价时流量因素的重要性,提出了以仿真手段为基础的干线协调控制方案的交通效益分析指标,该指标可用于分析协调控制方案对流量变化的适应性和敏感性.实验结果表明该指标具有可行性.通过分析绿信比变化、协调交叉口数量的变化对协调控制交通效益的影响,获取了协调控制方案的某些一般性特征,如干线方向的最小绿信比对整体交通效益起决定性影响;协调交叉口数应少于7个. 相似文献
9.
合理的配时和信号协调控制方案是提高道路通行效率和缓解交通拥挤的主要手段之一。结合交通组织优化改善措施,应用Synchro软件对泉州市津淮街的三个毗邻交叉口进行信号配时协调优化,并通过VISSIM仿真结果比较优化前后的干道信号协调控制的运行效果。结果表明:经过交通组织优化改善和信号配时优化后,自西向东方向,案例中3个交叉口的延误分别降低了51.9%、31.8%和65.5%,路段延误降低了27.9%,路段行程时间降低了21.7%。同时,各交叉口的平均排队长度也分别降低了61.6%、19.3%和19.2%,改善效果非常显著。 相似文献
10.
11.
12.
以绿灯末尾排队状态为目标, 研究了二相位控制单点交叉口的动态信号配时。根据排队形成和消散过程建立了排队模型, 分析了信号周期、绿信比和到达率对排队状态的影响。以两相位排队均处在弱欠饱和状态为控制目标, 提出了随到达率变化的简便信号配时算法, 根据总流量比计算信号周期, 根据较大的流量比调节主相位绿信比。仿真结果表明: 信号周期缓慢地同向改变两相排队状态, 绿信比反向改变两相排队状态, 到达率仅改变相应相位的排队状态。当交叉口饱和流率为0.50 pcu·s-1, 黄灯和绿灯前损时间为4 s, 到达率在0.10~0.26 pcu·s-1之间变化时, 两相排队始终都在弱欠饱和状态, 说明配时算法是有效的。 相似文献
13.
基于信息融合技术模拟驾驶人信息感知、分析决策和车辆控制的全过程,建立跟随驾驶协同仿真模型.模型以动态交通信息为输入,设计单个神经元仿真驾驶人对感知信息的筛选,采用模糊径向基高斯神经网络提取驾驶行为特征向量,应用模糊积分法模拟驾驶人对信息的分析和决策过程,输出为车辆控制状态.离线检验结果表明,该模型能较好地描述跟随车状态变化,具有较高的精度. 相似文献
14.
基于串联排队网络的三峡-葛洲坝水利枢纽联合调度模型 总被引:5,自引:2,他引:5
为了提高三峡-葛洲坝水利枢纽的整体通过能力, 分析了三峡-葛洲坝水利枢纽联合调度的实际需求, 建立了三峡-葛洲坝水利枢纽联合调度数学模型, 考虑了闸室面积利用率最大、整体待闸时间最小两个目标函数和船舶编排过程中的八个约束, 应用串联排队网络理论求解模型。算法将申报船舶按照航向分成四个船舶序列, 动态计算每艘船舶的权重, 兼顾船舶长度与宽度优先, 待闸时间约束、葛洲坝船闸通航条件限制和任务均衡的要求, 循环排船, 逐步优化。应用结果表明应用该数学模型和编排算法编制一个计划期的两坝五闸计划仅需2 min, 编排时间短, 葛洲坝2#船闸的闸室面积利用率高于70%, 并且客船和旅游观光船均排在前面的闸次中, 说明客船的待闸时间约束是满足的, 并且在航向上是上下航向交替运行, 没有出现倒闸情况, 编制的计划满足实际调度需要。 相似文献
15.
为确保通信延时条件下协同式自适应巡航控制(CACC)系统的弦稳定性,利用模型预测控制(MPC)和长短期记忆(LSTM)预测方法,研究CACC系统中车辆协同控制下的通信延时补偿方法;基于车辆队列四元素架构理论,构建了包括车辆动力学模型、间距策略、网络拓扑和MPC纵向控制器的系统模型,并综合考虑2范数和无穷范数弦稳定性条件,提出了CACC车辆队列混合范数弦稳定性量化指标,最终形成协同式车辆队列建模与评价体系;设计了一种利用前车加速度轨迹(PVAT)作为开环优化参考轨迹的MPC方法,即MPC-PVAT,通过综合考虑队列的跟驰、安全、通行效率和燃油消耗等性能指标,使目标函数趋于最小代价,从而得到当前时刻的最优控制量,并利用庞特里亚金最大值原理对所设计的优化问题进行快速求解;在MPC-PVAT基础上,提出一种基于长短期记忆(LSTM)网络的通信延时补偿方法,即MPC-LSTM,将跟驰车辆的传感器信息输入LSTM网络来预测其前车的运动状态,从而缓解短暂通信延时对车辆队列稳定性的影响。仿真测试结果表明:MPC-LSTM可容忍的通信延时上界大于1.5 s,比MPC-PVAT提升了0.8 s,比线性控制器提升了1.1 s;在基于实车数据测试中,当通信延时增加到1.2 s时,MPC-LSTM的弦稳定性指标相比MPC-PVAT提升了20.33%,与线性控制器相比稳定性提升了39.35%。可见,在通信延时较大的情况下,MPC-LSTM对通信延时具有很好的容忍性,从而有效地保证了CACC车辆队列的弦稳定性。 相似文献
16.
针对传统区域交通控制技术无法应对机非冲突干扰的问题, 结合中国城市道路混合交通流的特点, 研究了交叉口与路段非机动车对机动车的干扰。分析了区域路网机动车交通特征, 确定了混合交通特性相似的区域。基于路段非机动车的阻滞作用, 分析了交叉口通行能力的折减与相邻交叉口相位差的优化。以区域路网机动车总延误为优化目标, 建立了非机动车影响条件下的区域交通信号控制优化模型, 优化了信号周期时长、绿信比和相位差等参数, 并利用遗传算法求解模型。利用VISSIM仿真软件, 以上海市杨浦区五角场环形区域路网为例对优化模型进行验证。验证结果表明: 现状信号控制方案下区域路网7个交叉口机动车的车均延误为24.5~42.9s, 平均为35.99s, 路网总延误为256.39h, 优化后交叉口的车均延误为21.8~36.4s, 平均为30.12s, 路网总延误为214.57h, 7个交叉口车均延误减少了10%~24%, 平均为16.31%。可见, 优化模型能够显著降低区域路网车均延误与总延误, 提高区域路网通行效率。 相似文献
17.
为保证城市快速路处于最大通行能力状态,提出了城市快速路交通流量的一种非线性模型预测方法,在此基础上,对快速路各入口匝道流量进行协调控制.以城市快速路某一拥挤路段为例进行了仿真研究,结果表明,该方法不仅能够有效地消除交通拥挤,维持主线车流稳定,而且匝道调节率平稳,同时该控制方法能保证各入口匝道交通需求的公平性. 相似文献
18.
针对基本通行能力不能全面反映道路交通状况的缺点, 提出了城市道路随机化通行能力概念; 依据评价体系定义交通中断与持续中断, 量化了城市道路交通拥堵程度; 研究了现有通行能力估计方法, 利用乘积限与寿命分布列构造并估计了交通流分布函数; 结合交叉口各入口交通流数据特性改进传统连续交通流参数模型, 提出了基于交通流生存函数的交叉口通行能力计算模型; 将该模型估计结果与道路通行能力手册HCM2010中的模型估计结果和交叉口实测流量进行误差对比。分析结果表明: 生存函数模型计算出的中断、持续中断交叉口通行能力与HCM2010中的模型计算结果误差均值分别为0.162 1与0.116 4, 方差分别为0.029 0与0.015 2, 两者误差波动均较小; 提出的计算模型结果与实测较大流量相对误差分别为9.720%、3.822%和4.936%、4.779%, 统计意义下提出的计算模型相对误差为5.871%, 估计效果稳健; 城市道路交通中断次数、可接受中断概率、交通流、速度与道路通行能力之间存在生存函数乘积限对应关系, 研究交叉口的通行能力为7 632 pcu·h-1, 提出的计算模型估计结果更具有可靠性。可见, 提出的计算模型适用性较好, 特别在不同拥堵程度的城市道路交通区域, 通过可接受中断概率估计通行能力, 可为城市道路交通组织与管理部门提供优化目标、科学决策和易于接受的理论依据。 相似文献
19.
为了检测Q学习算法在信号控制方案中的效果,在Webster配时法的基础上,建立了适应交通信号控制及以车均延误最小为目标的奖惩函数,并详细说明了Q学习独立交叉口信号控制的原理和应用过程.通过流量波动大和小两个算例,验证了Q学习控制优于定时控制. 相似文献
20.
结合城市干道交通流为间断流的特点,主要研究城市主、次干道交通流速度-流量关系曲线,并采用迭代对分区间法得出各个车道的推荐通行能力值。研究结果可为主、次干道通行能力、服务水平的研究以及交通仿真参数的修订提供理论依据,并为城市交通规划设计、管理及控制提供技术支持。 相似文献