首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SUMMARY

This paper reviews the present state of knowledge of human control of road vehicles. Lateral and longitudinal control of motorcycles and automobiles are discussed, whenever information is available. Although knowledge has increased greatly in the last decade, the major part of this concerns lateral control and most is of an ad hoc nature. Adequate mathematical models for longitudinal motion of the vehicle are yet to be developed. Their development is a necessary step in the attainment of a complete understanding of longitudinal control.  相似文献   

2.
The paper presents a curving adaptive cruise control (ACC) system that is coordinated with a direct yaw-moment control (DYC) system and gives consideration to both longitudinal car-following capability and lateral stability on curved roads. A model including vehicle longitudinal and lateral dynamics is built first, which is as discrete as the predictive model of the system controller. Then, a cost function is determined to reflect the contradictions between vehicle longitudinal and lateral dynamics. Meanwhile, some I/O constraints are formulated with a driver permissible longitudinal car-following range and the road adhesion condition. After that, desired longitudinal acceleration and desired yaw moment are obtained by a linear matrix inequality based robust constrained state feedback method. Finally, driver-in-the-loop tests on a driving simulator are conducted and the results show that the developed control system provides significant benefits in weakening the impact of DYC on ACC longitudinal car-following capability while also improving lateral stability.  相似文献   

3.
汽车纵向加/减速度多模型分层切换控制   总被引:1,自引:0,他引:1  
针对汽车纵向动力学模型的大不确定性,设计了一种基于鲁棒控制理论的汽车纵向加速度多模型分层切换控制系统。通过分析汽车纵向动力学特性,用4个不确定模型覆盖对象不确定性,并应用LM I方法设计对应的鲁棒性能控制器集合。考虑鲁棒控制系统的特点,设计了一种对不确定性的系统增益进行估计的切换指标函数,以选择控制器进行控制。实验表明,提出的方法在大不确定性下可以对纵向加速度有效控制。  相似文献   

4.
In this paper, decoupling control with H performance for four-wheel steering (4WS) vehicles under varying longitudinal velocity is studied. A novel control scheme for a nonlinear model of three states, respectively, the longitudinal and lateral velocities, and yaw rate, is proposed to address this issue. The scheme is composed of two varying-parameter controllers designing problems for both longitudinal and lateral systems with coupling performance. Varying parameters of both these controllers depend only on longitudinal velocity. Controlled by these controllers, the longitudinal system is decoupled with lateral velocity and yaw rate, and the lateral system is input–output decoupling with H performance. In addition, feedback signals are the longitudinal velocity and yaw rate, hence observations or measurements of lateral velocity are not necessary. Simulations show that vehicles controlled by our scheme are input–output diagonal decoupling and execute very well while longitudinal velocity varies in a large range, coupling appears between longitudinal and lateral systems, and external disturbances do exist. In summary, this control scheme can improve handling characteristics, safety and comfort proved from theory to practice in this paper.  相似文献   

5.
针对车辆纵、横向跟踪的强耦合、非线性特性,设计了基于自适应模型预测控制理论的轨迹跟踪控制器.同时考虑纵、横向跟踪控制,并引入线性变参数模型(LPV),把纵向速度对横向跟踪的影响转化为LPV模型中调度参数的变化,把纵、横向跟踪的高度非线性动力学模型转化为LTI模型的插值队列,以用于自适应纵向速度的改变.基于预测控制理论,...  相似文献   

6.
This paper deals with the longitudinal and lateral control of an automotive vehicle within the framework of fully automated guidance. The automotive vehicle is a complex system characterised by highly nonlinear longitudinal and lateral coupled dynamics. Consequently, automated guidance must be simultaneously performed with longitudinal and lateral control. This work presents an automated steering strategy based on nonlinear model predictive control. A nonlinear longitudinal control strategy considering powertrain dynamics is also proposed to cope with the longitudinal speed tracking problem. Finally, a simultaneous longitudinal and lateral control strategy helps to improve the combined control performance. This whole control strategy is tested through simulations showing the effectiveness of the present approach.  相似文献   

7.
Most of the controllers introduced for four-wheel-steer (4WS) vehicles are derived with the assumption that the longitudinal speed of the vehicle is constant. However, in real applications, the longitudinal speed varies, and the longitudinal, lateral, and yaw dynamics are coupled. In this paper, the longitudinal dynamics of the vehicle as well as its lateral and yaw motions are controlled simultaneously. This way, the effect of driving/braking forces of the tires on the lateral and yaw motions of the vehicle are automatically included in the control laws. To address the dynamic parameter uncertainty of the vehicle, a chatter-free variable structure controller is introduced. Elimination of chatter is achieved by introducing a dynamically adaptive boundary layer thickness. It is shown via simulations that the proposed control approach performs more robustly than the controllers developed based on dynamic models, in which longitudinal speed is assumed to be constant, and only lateral speed and yaw rate are used as system states. Furthermore, this approach supports all-wheel-drive vehicles. Front-wheel-drive or rear-wheel-drive vehicles are also supported as special cases of an all-wheel-drive vehicle.  相似文献   

8.
矿用无人运输车辆作业环境恶劣,存在大曲率弯道、坡道等非结构化道路明显特征,对无人化运输控制要求高。为改善PID等传统控制算法适应性问题,提高无人驾驶轨迹跟踪的车辆横纵向控制精度,提出一种纯跟踪与PID结合的多点预瞄横向控制、考虑模糊控制表参数拟合的纵向控制方法,减少控制参数的同时提高算法效果。根据传统控制算法设计基础控制器,结合基础算法优势进行横向与纵向控制算法设计,通过硬件在环仿真和实车测试验证算法的性能。试验结果表明,横向控制算法与斯坦利算法相比,车辆路径跟踪精度有明显改善,纵向控制方面,速度跟随误差<1 km/h,保证了车辆驾驶时的平稳性与舒适性。  相似文献   

9.
本文中针对大曲率转弯工况下,智能汽车纵横向动力学特性的耦合和动力学约束导致轨迹跟踪精度和稳定性下降的问题,提出一种基于非线性模型预测控制(NMPC)的纵横向综合轨迹跟踪控制方法,通过NMPC和障碍函数法(BM)的有效结合,提高了跟踪精度,改善了行驶稳定性.首先建立四轮驱动-前轮转向智能汽车动力学模型和轨迹跟踪模型,采用...  相似文献   

10.
In this paper, a set of longitudinal velocity and distance controllers with switching logic is proposed for an active driver safety system, and validation via hardware-in-the-loop simulation (HILS) is presented. Since the desired velocity and distance are given discretely and arbitrarily by a driver, there are usually discontinuities or discrete jumps between the desired and current vehicle state immediately after the switching. To minimize performance degradation resulting from this discrete jump, dynamic surface control (DSC) with an input-shaping filter is applied for both velocity and distance control. Furthermore, while much cost and effort are usually necessary for the experimental validation of a longitudinal controller, the validation of the longitudinal controller via HILS is performed with a minimum of effort. In the HILS, the various switching scenarios and desired discrete inputs in terms of velocity and distance are considered and the corresponding performance of the controller is shown in the end.  相似文献   

11.
针对车辆在纵向运动和横摆运动时的强耦合关系给车辆动力学控制带来的困难,以四轮独立电驱动车辆作为研究对象,基于微分几何理论设计了车辆系统运动解耦控制方法,将非线性强耦合的四轮驱动车辆动力学系统解耦为纵向和横向两个相对独立运动控制子系统,并设计了鲁棒控制器,以提高抵抗车辆行驶时不确定外力如侧风的干扰能力。基于 Trucksim 软件建立四轮驱动车辆模型,并针对车辆解耦控制策略和抗干扰策略进行了仿真测试。结果表明,相比于无解耦控制的车辆,采用微分几何解耦控制的四轮独立驱动车辆纵向速度偏差降低了 82.1%,横摆角速度偏差降低了80.7%,且微风干扰下的抗干扰能力明显改善,车辆稳定性显著提升。为验证该运动解耦控制策略在实时系统中的控制效果,还进行了硬件在环试验,结果表明,硬件在环试验的结果与仿真结果一致。  相似文献   

12.
考虑到城市环廊隧道(Urban Traffic Link Tunnel,UTLT)事故通风和火灾烟气控制的难度,为了给其提供防排烟优化设计方案,采用CO2为示踪气体,对隧道单独采用横向排烟方式时的排烟、排热效率进行考查。对射流风机纵向排烟配合轴流风机集中排烟、射流风机纵向排烟配合排烟井自然排烟2种组合排烟方式在UTLT中的效果进行研究。结果表明:在UTLT中单独使用横向排烟时,随着排烟量的提高,排烟、排热效率增长趋于缓慢;增大横向排烟量会增加风机房与管道的占地面积,可能在城市核心区使用时遇到困难;采用火源上游射流风机纵向排烟与火源下游轴流风机集中排烟配合的方案,在轴流风机排烟量不变的情况下,仅仅依靠轴流风机的驱动力难以抑制烟气往火源上游蔓延;需要借助射流风机营造的纵向气流配合,但纵向风速过大又会加剧烟气向下游分支蔓延;采用火源上游射流风机纵向排烟与火源下游竖井自然排烟配合的方案,在纵向风速一定的情况下,须合理设置排烟井的截面尺寸与高度。  相似文献   

13.
郝悦 《汽车实用技术》2022,47(4):158-161
在我国随着人民生活水平的提高,车辆保有量也在呈倍速增长,进而引起了大量的交通安全问题,其中由驾驶员操作不当引起的交通事故约占所有交通事故的75%。而汽车的智能化发展可以很好地解决此类交通安全问题。智能汽车的核心技术主要包括环境感知、行为决策及运动控制三方面。其中运动控制作为智能汽车核心技术之一,有着重要的研究意义。智能汽车的运动控制包括横向控制和纵向控制两部分,对汽车横、纵向运动控制中的多种方法进行了分析介绍,包括模型预测控制、模糊逻辑控制、神经网络的自适应滑膜控制、直接式控制和分层式控制;同时介绍了横纵向耦合实现运动控制的重要性,并分析了其研究现状;最后,对智能汽车运动控制的后续发展方向进行了展望,有助于智能汽车运动控制的进一步优化发展。  相似文献   

14.
Summary This paper examines the role of the human driver as the primary control element within the traditional driver-vehicle system. Lateral and longitudinal control tasks such as path-following, obstacle avoidance, and headway control are examples of steering and braking activities performed by the human driver. Physical limitations as well as various attributes that make the human driver unique and help to characterize human control behavior are described. Example driver models containing such traits and that are commonly used to predict the performance of the combined driver-vehicle system in lateral and longitudinal control tasks are identified.  相似文献   

15.
Understanding and Modeling the Human Driver   总被引:4,自引:0,他引:4  
Summary This paper examines the role of the human driver as the primary control element within the traditional driver-vehicle system. Lateral and longitudinal control tasks such as path-following, obstacle avoidance, and headway control are examples of steering and braking activities performed by the human driver. Physical limitations as well as various attributes that make the human driver unique and help to characterize human control behavior are described. Example driver models containing such traits and that are commonly used to predict the performance of the combined driver-vehicle system in lateral and longitudinal control tasks are identified.  相似文献   

16.
In order to study the dynamic behaviours of locomotives under saturated adhesion, the stability and characteristics of stick–slip vibration are analysed using the concepts of mean and dynamic slip rates. The longitudinal vibration phenomenon of the wheelset when stick–slip occurs is put forward and its formation mechanism is made clear innovatively. The stick–slip vibration is a dynamic process between the stick and the slip states. The decreasing of mean and dynamic slip rates is conducive to its stability, which depends on the W/R adhesion damping. The torsion vibration of the driving system and the longitudinal vibration of the wheelset are coupled through the longitudinal tangential force when the wheelset alternates between the stick and the slip states. The longitudinal oscillation frequencies of the wheelset are integral multiples of the natural frequency of torsion vibration of the driving system. A train dynamic model integrated with an electromechanical and a control system is established to simulate the stick–slip vibration phenomenon under saturated adhesion to verify the theoretical analysis. The results show that increases of the longitudinal axle guidance stiffness and the motor suspension stiffness are beneficial to the stick–slip vibration stability and the locomotive's traction ability. The optimised matching of the longitudinal axle guidance stiffness and the motor suspension stiffness are helpful to avoid longitudinal resonance when the stick–slip vibration occurs.  相似文献   

17.
The longitudinal location of a vehicle’s center of gravity (CG) is used as an important parameter for vehicle safety control systems, and can change considerably according to various driving conditions. Accordingly, for the better performance of vehicle safety control systems, it is essential to obtain the accurate CG location. However, it is generally difficult to acquire the value of this parameter directly through sensors due to cost reasons. In this study, a practical algorithm for estimating vehicle’s longitudinal CG location in real time is proposed. This algorithm is derived based only on longitudinal motion of the vehicle, excluding excessive lateral, yaw and roll movements of the vehicle. Moreover, the proposed algorithm has main differences from previous studies in that it does not require information such as vehicle mass, vehicle moments of inertia, road grade or tire-road surface friction, which are difficult to acquire. In the proposed algorithm, the relationship between the ratio of rear-to-front tire longitudinal force and the corresponding wheel slips are used to determine the CG location. To demonstrate a practical use of the proposed algorithm, the ideal brake force distribution is tested. The proposed CG estimation algorithm and its practical use are verified via simulations and experiments using a test vehicle equipped with electro-mechanical brakes in the rear wheels. It is shown that the estimated CG locations are close to the actual ones, and that the deceleration can be maximized by the ideal brake force distribution.  相似文献   

18.
针对现有汽车稳定性控制系统中,汽车全轮纵向力分配算法在极端工况下出现轮胎力饱和.导致滑移率控制器过多介入而出现控制振荡和对控制目标的调整不合理等问题,提出了一种新的主动动态目标调整的全轮纵向力分配算法.该算法在极端工况下,根据车辆运动状态和路面附着状态,对直接横摆力矩控制目标M_(xd)和纵向驱动/制动力控制目标F_(xd)进行主动动态的调节.仿真结果表明,采用该算法解决了现有全轮纵向力分配算法的上述问题.  相似文献   

19.
ABSTRACT

Significant developments in longitudinal train simulation and an overview of the approaches to train models and modelling vehicle force inputs are firstly presented. The most important modelling task, that of the wagon connection, consisting of energy absorption devices such as draft gears and buffers, draw gear stiffness, coupler slack and structural stiffness is then presented. Detailed attention is given to the modelling approaches for friction wedge damped and polymer draft gears. A significant issue in longitudinal train dynamics is the modelling and calculation of the input forces – the co-dimensional problem. The need to push traction performances higher has led to research and improvement in the accuracy of traction modelling which is discussed. A co-simulation method that combines longitudinal train simulation, locomotive traction control and locomotive vehicle dynamics is presented. The modelling of other forces, braking propulsion resistance, curve drag and grade forces are also discussed. As extensions to conventional longitudinal train dynamics, lateral forces and coupler impacts are examined in regards to interaction with wagon lateral and vertical dynamics. Various applications of longitudinal train dynamics are then presented. As an alternative to the tradition single wagon mass approach to longitudinal train dynamics, an example incorporating fully detailed wagon dynamics is presented for a crash analysis problem. Further applications of starting traction, air braking, distributed power, energy analysis and tippler operation are also presented.  相似文献   

20.
A robust control algorithm for an anti-lock brake system is proposed. The method used is based on static-state feedback of longitudinal slip and does not involve controller scheduling with changing vehicle speed or road adhesion coefficient estimation. An improvement involving scheduling of longitudinal slip reference with longitudinal acceleration measurement is included. Electromechanical braking actuators are used in simulations, and the algorithm used in this study is shown to have high performance on roads with constant and varying adhesion coefficients, displaying nice robustness properties against large vehicle speed and road adhesion coefficient variations. Guidelines are provided for tuning controller gains to cope with unknown actuator delay and measurement noise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号