首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
何泽民  王霄锋 《汽车工程》1994,16(4):230-236
本文综合应用结构有限元分析,疲劳寿命估算和室内道路模拟试验技术对某型汽车后桥壳的垂直弯曲疲劳强度进行了分析,评价。  相似文献   

2.
江铃汽车驱动桥桥壳有限元分析   总被引:9,自引:0,他引:9  
利用Solidworks软件建立一辆江铃汽车驱动桥壳3D模型。基于ANSYS Workbench协同仿真平台,模拟驱动桥壳台架试验国家标准中规定的试验工况进行有限元分析,求得该车驱动桥3种不同厚度桥壳的弯曲刚度、垂直静强度和疲劳寿命。结果表明,3种厚度的桥壳都具有足够的静强度和刚度,疲劳寿命均达到国家标准。  相似文献   

3.
文章基于有限元法,采用ABAQUS软件,对某商用车后桥系统进行了CAE强度分析,超载30%工况强度分析、扭转耐久、垂直弯曲耐久、转弯弯曲台架三工况CAE疲劳耐久分析,分析结果显示,后桥系统强度和耐久性能满足设计目标。  相似文献   

4.
在Pro/E环境下建立某汽车驱动桥壳3D模型,利用NX Nastran软件,按国家驱动桥壳台架试验的标准,在计算机中采用有限元方法模拟其垂直弯曲静刚性试验、垂直弯曲静强度试验和垂直弯曲疲劳试验。同时将有限元计算结果与试验结果进行了对比,吻合较好。因此用有限元模型模拟台架试验的方法是可行的,能实现在设计阶段对试验结果的预测,有效地降低设计成本,缩短设计周期,产生较好的经济效益。  相似文献   

5.
以某轿车后桥为例,介绍了疲劳寿命计算的理论基础和建立后桥精确有限元模型的方法。分别应用准静态法和随机振动法计算了后桥的疲劳寿命,讨论了频响分析带宽对振动疲劳分析方法的影响以及两种不同疲劳计算方法的区别和应用范围。结果表明,应用有限元仿真和试验相结合的方法可以有效地预测轿车关键零部件的疲劳寿命。  相似文献   

6.
利用Pro/E软件构建了PY160平地机后桥齿轮的精确模型,并进行装配.将简化后的装配模型导入ANSYS软件中,建立起非线性接触分析的有限元模型.通过有限元分析,得出后桥输出齿轮齿根最大弯曲应力、轮齿最大接触应力和轮齿在多个啮合位置的应力分布云图,在此基础上对齿轮失效原因进行分析,结果可为齿轮的寿命预估提供参考.  相似文献   

7.
为解决PALIO后桥国产化过程中寿命达不到要求的问题,采用电测法测得了进口件和几种工艺条件下的国产件PALIO后桥在扭转台架疲劳试验中的主应变幅度。当取有效应变集中系数为1.3时,根据Coffin-Manson公式,运用PALIO后桥用钢的应变疲劳性能计算得到的疲劳寿命与实际台架疲劳寿命相符。  相似文献   

8.
基于整车动力学仿真的后桥壳疲劳寿命分析与改进   总被引:3,自引:0,他引:3  
针对某越野车在改型过程中后桥壳在台架疲劳试验时出现局部开裂的情况,应用ADAMS/Car建立了整车动力学模型,进行动力学仿真,得出危险工况冲击载荷下桥壳的受力情况.采用ANSYS Workbench对桥壳进行了疲劳寿命计算,结果与试验吻合.分析其存在的不足,并提出了改进方案.对改进后的桥壳再次进行疲劳计算,满足设计要求,试制后进行台架试验,寿命达到国家标准要求.  相似文献   

9.
为有效预测汽车后桥齿轮的残余寿命,针对后桥的非线性特性,提出了一种递归预处理与RBF网络相结合的齿轮残余寿命预测方法,并验证了该方法的可行性.利用该方法进行了汽车后桥齿轮残余寿命预测,结果表明,该方法对齿轮残余寿命的预测结果与齿轮疲劳试验结果吻合,预测精度高.  相似文献   

10.
通过对零件的台架试验受力状况进行CAE仿真,对影响后桥总成台架疲劳试验寿命的危险区域重点分析,控制和调整生产工艺参数,制造出合格的产品。试制的后桥总成成功通过疲劳台架试验和道路试验,满足各项技术要求。结构仿真与疲劳台架试验相结合加速了后桥开发、制造和功能验证流程。  相似文献   

11.
为提高驱动桥壳的轻量化水平和道路行驶疲劳可靠性,对驱动桥壳进行6-Sigma稳健性多目标轻量化设计。首先,建立驱动桥壳的虚拟台架仿真模型,并进行垂直弯曲刚性和垂直弯曲静强度的仿真分析,将仿真得到的桥壳本体各测点变形量和关键受力点应力值与试验结果进行对比,以验证桥壳虚拟台架仿真模型的可信性。其次,建立驱动桥壳的最大垂向力仿真模型,结合耐久性强化路面下驱动桥壳板簧座处的垂向载荷谱,基于名义应力法,对驱动桥壳进行了道路行驶工况下的疲劳寿命分析。然后,选取驱动桥壳本体各截面壁厚为设计变量,基于熵权法和TOPSIS(Technique for Ordering Preferences by Similarity to Ideal Solution,TOPSIS)方法研究各壁厚变量对桥壳综合性能的影响。结合RBF(Radial Basis Function,RBF)近似模型和NSGA-Ⅱ算法(Elitist Non-dominated Sorting Genetic Algorithm,NSGA-Ⅱ)对驱动桥壳进行基于疲劳寿命的多目标确定性轻量化设计,获取Pareto最优解集,选取桥壳的优化方案。最后,基于蒙特卡罗模拟抽样方法和微存档遗传算法(AMGA)对驱动桥壳进行了多目标6-Sigma稳健性轻量化设计,得到桥壳稳健性优化方案。研究结果表明:稳健性优化后,驱动桥壳本体的疲劳寿命降低了12.3%,但和初始结构的疲劳寿命相比,仍提升了117%;桥壳本体疲劳寿命正态分布的标准方差下降了72.1%,说明桥壳本体的疲劳可靠性得到了大幅提升;桥壳本体的质量升高了1.8%,但和优化前的桥壳原结构相比,仍实现减重5.9%。  相似文献   

12.
以某轻型汽车后桥壳为例,运用工程疲劳寿命估算与道路模型疲劳试验相结合的方法,给出了该后桥壳基于海南汽车试验场可靠性试验的道路行驶载荷条件下所得到的疲劳寿命概率分布。  相似文献   

13.
采用载荷分布预分析技术,对某MPV汽车后桥进行了有限元分析,得到了该后桥在静载、制动、转向及扭转4种工况下的应变云图和张量图。通过分析应变云图和张量图,确定了该后桥的关键受载部位及其主应力方向,然后处理标定试验数据,线性回归出后桥载荷一应变的函数关系,并通过实车道路试验结果分析验证了通过有限元分析确定出的后桥应变传感器贴片位置的正确性。  相似文献   

14.
T-car后桥台架疲劳试验研究   总被引:1,自引:1,他引:1  
采用台架疲劳试验模拟了T-car后桥在道路试验中的受力状态。通过对T-car后桥进行的总成扭转试验、总成单侧侧向力试验和总成单侧纵向力试验,测得了各测点在疲劳循环中的应变幅、主应变幅度,并采用Coffin-M anson公式估算了寿命。试验表明,台架疲劳试验能反映路试时的疲劳损伤,根据T-car后桥用钢的应变疲劳性能估算得到的疲劳寿命与实际路试结果相符。  相似文献   

15.
本文介绍了某低地板客车用驱动桥的安装形式及主要技术参数,基于有限元分析软件HyperWorks提供了一种驱动桥壳的分析方法,并对该驱动桥壳进行了以下典型工况的强度分析:垂直弯曲、制动、转弯和最大牵引力工况。本文对后续驱动桥壳的有限元分析具有一定的参考作用。  相似文献   

16.
扭转梁后桥开发过程中,须按照从整车技术要求分解出的零部件技术规范进行设计,并借助CAE优化技术对零部件各性能进行优化。本文主要针对某型扭转梁后桥侧向力耐久疲劳和减振器力耐久疲劳工况进行优化分析,结构优化后耐久疲劳寿命提高。实物样件台架验证结果与优化仿真分析结果基本一致。  相似文献   

17.
驱动桥是汽车上主要部件之一,驱动桥的质量好坏会大大影响到车辆的安全使用。在车辆不断向高速、轻量、低能耗和高性能发展的今天,微型车车桥的安全性日益受到关注。本文以实体单元为基础,通过Proe软件对微型汽车车桥进行建模,利用Hyperworks对模型进行有限元模拟分析。在随机载荷下的对其疲劳寿命予以分析,并对驱动桥的疲劳强度进行了计算,得出了驱动桥的应力和变形分布。通过强度评价和疲劳寿命估算,验证了该车桥设计的合理性,为商用车车桥设计研发提供了参考。  相似文献   

18.
选择具有优良成形性能的600 MPa级马氏体相钢制作成形复杂的轮辐及540 MPa级贝氏体双相钢制作轮辋.建立三维模型和有限元模型,采取静态分析模拟动态分析的方式分别对车轮弯曲和径向工况进行仿真分析,得出易于产生疲劳裂纹的应力集中点及其最大应力、应变值.选用疲劳寿命名义应变法建立了高强钢车轮的E-N曲线,利用疲劳分析软...  相似文献   

19.
本文用三种单一路面载荷谱对EQ140汽车驱动桥壳进行了强化程序疲劳试验,并对疲劳断口进行了宏观和微观分析,从而找出了它的破坏机理的原因,并提出了改善EQ140汽车驱动桥壳疲劳强度的措施。  相似文献   

20.
基于有限元的疲劳寿命预测可应用于各行业,疲劳寿命预测精度的提高,离不开有效的材料疲劳卡片,疲劳卡片反映了载荷水平与疲劳寿命的关系。通过设计合理的材料试样的疲劳试验,结合试验与有限元计算,计算不同损伤参量创建应用于疲劳寿命分析的材料疲劳卡片,同时对疲劳卡片的仿真精度进行了验证。结果表明,基于名义应力法构建的疲劳卡片具备较高的预测精度,结合材料试验数据与仿真结果构建的多应力比S-N疲劳卡片,可用于其他适用于应力疲劳分析的零部件疲劳寿命分析,为提高零部件疲劳寿命预测精度提供新的技术途径,为零件的前期结构设计提供参考,可在不同领域进行推广并开展进一步分析研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号