首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 157 毫秒
1.
为了使发动机在高转速时能提供较大的功率,在低转速时又能产生足够的扭矩,现代轿车发动机广泛采用可变气门控制系统,他能根据发动机的运转状况而改变配气相位或气门升程。本田轿车可变气门控制系统能同时控制配气相位和气门升程。  相似文献   

2.
问与答     
《驾驶园》2008,(10):62-63
问:怎样检修气门、气门导管、气门座和气门弹簧?答:1、气门与气门导管的检修检修气门与气门导管时,首先要检测气门与气门导管的配合间隙。用内径百分表测量气门导管内径。用外径千分尺测量气门杆的外径。其配合间隙为:气门导管内径与气门杆外径之差的标准值为进气门:0.04~0.09mm,排气门:0.045~0.10mm,超过规定值时,应更换气门或气门导管。此外,气门杆弯曲会使气门在导管内运动时出现卡滞而造成气门关闭不严,对此应校直气门杆或更换新气门。  相似文献   

3.
采用台式试验装置模拟内燃机气门与气门座圈的负荷环境和接触条件,通过试验研究了气门与座圈的磨损机理以及气门与座圈磨损的主要影响因素。试验结果表明,气门与座圈的磨损主要来源于气门关闭时的落座冲击和燃烧压力作用下气门在座圈上的滑动,并且与气门的关闭速度、燃烧负荷、气门相对气门座圈的不对中性及气门和座圈的材料选择等工作状态有关。  相似文献   

4.
主要介绍了别克3种型号发动机的气门与气门座、气门挺杆、气门导管、凸轮轴的检修,同时介绍了气门密封性能、气门弹簧、液压挺杆的检查及气门间隙的检查与调整等。  相似文献   

5.
故障现象 我公司一辆神龙富康轿车发动机大修后,在走合期内出现了气门间隙越来越小的故障,致使气门关闭不严,导致气缸压力降低,发动机动力严重不足,汽车无法正常行驶。检测排除 经多次检查,调整气门间隙,均不起作用。每次将气门间隙调到标准值,发动机运行几个小时后,气门间隙就会自动变小,甚至完全消失。对气门摇臂、气门挺杆、气门调整螺钉进行检查,发现这些零件都没有磨损。检查发动机的配气相位,也没有发现异常情况。拆下气缸盖,发现气门的下沉量都增大了。而在发动机修理时,气门的下沉量是符合标准的。接着拆下气门,检查气门与气门座圈的配合面,发现气门座圈磨损相当严重,已经将整个气门座圈磨去了一半,而气门则基本没有磨损。可以断定,气门间隙减小是由于气门座圈质量太差引起的。据了解,该车发动机大修时,因原来的气门座圈下沉量超过使用极限而全部进行了更换。但新的气门座圈不符合质量要求,既不耐磨,又不耐高温。发动机工作时,由于燃烧气体的腐蚀作用,再加上高温时气门开闭时的撞击,使气门座圈磨损加剧。气门座圈磨损后,气门因下沉而发生位移,气门间隙就会变小,甚至完全消失。重新更换了一组正厂生产的气门座圈并研磨气门后装复试车,故障排除。此例故障再次提...  相似文献   

6.
四冲程发动机气门间隙是根据气门选用的材料、受热膨胀系数而设定。气门间隙过大使气门迟开早闭,气门打开时  相似文献   

7.
PVRB-70型多功能气门组修磨机是修磨气门及气门座的两用机,用于精磨内燃机的进、排气门及气门座密封面,尤其适于修磨高硬度旧气门及气门座圈工作面,其特点是加工后的工作面无需再研磨即可直接配合使用,避免了对气门及气门座的非工作性磨损,延长了气门及气门座的使用寿命。  相似文献   

8.
陶瓷气门 陶瓷气门比钢轻60%,旋转质量小50%。在试验中,这些气门已使燃料经济性提高3%~5%,气门头的应力减小,并且还可使用更轻更小的气门弹簧。然而,陶瓷气门的成本为普通气门的3倍,这几乎与充钠气门相同。奔驰、宝马和大众均在试验充钠气门,目前这些公司用燃料来冷却充钠气门,而更加严格的排放标准不久将结束这种做法。因此,陶瓷气门会满足它们的需求。  相似文献   

9.
可变气门系统的研究与发展   总被引:11,自引:1,他引:11  
根据对气门正时、气门升程、气门开启持续期及气门动作速度等参数进行调节的方式 ,对发动机各种可变气门系统进行了分类 ,介绍了不同系统的组成、工作原理及其特点。  相似文献   

10.
刘小平  郭兰 《天津汽车》2010,(3):39-41,46
文章基于国内外对汽车发动机气门失效的研究现状,从工况方面出发,分析了导致气门失效的主要考虑因素,并根据气门的工况特征,采用有限元法进行了排气门在燃烧载荷、冲击载荷、温度载荷情况下及气门偏心异常条件下气门应力分布的研究,最后基于应力进行了气门的疲劳分析。结果表明,异常情况下,气门和气门座交接面处应力异常增大,疲劳损坏对气门的寿命影响很大,有可能是造成本次失效的主要原因。通过分析,也可为气门的失效分析和气门的优化设计提供理论依据。  相似文献   

11.
1.气门及气门座圈的检修清洗气门后,检查气门头部是否损坏,如发现气门头部有翘曲、裂纹、凹坑或磨损严重时,应予以更换。检查和测量气门杆外径,如杆部损伤或磨损严重、端部磨损出现凹坑、锁片(块)磨损,均应予以更换。对于B系列和C系列柴油机,气门杆外径不得小于7.94mm;对于N系列柴油机,气门杆外径不得小于l1.405mm。  相似文献   

12.
可变排量发动机技术与停阀机构的发展动向(下)   总被引:1,自引:0,他引:1  
1、滑销的工作过程 在停止工作的气门中位于气门挺柱与气门之间装滑销保持器。它是由滑销、回位弹簧、限位销构成。当滑阀处于关闭状态,凸轮轴的动作只对气门挺柱、滑销保持器、处气门弹簧发生作用,使它们工作,而“停阀气门”不动作。当滑阀工作时,滑销保持器内的滑销在液压作用下被挤出,在气门杆上端移动。这时凸轮轴的动作作用于气门,“停阀气门“也进行动作(见图8)。 2、滑阀的作用  相似文献   

13.
“电磁气门是汽油机凸轮轴气门传动机构革命性产品,天合、西门子·威迪欧等公司都在研究开发。电磁气门可取代凸轮轴、气门挺杆、摇臂、气门弹簧、挺杆等运动部件,可实现气门正时,提高发动机燃油经济性,减轻重量。没有火花点燃式汽油机节气和泵气损失。电磁气门并且可与缩小排量、EGR、涡轮增压、汽油直喷、气缸切断等集成在一起,发展前途明显  相似文献   

14.
发动机工作时,由于汽门处在高温下工作,气门等机件因受热膨胀而伸长,所以,必须在气门冷态时预留一定的气门间隙,以保证在气门受热膨胀伸长时,仍能使气门与气门座紧密配合。由于气门长时间的工作,改变了原来的气门间隙。所以,当听到气门有“嗒嗒”的异响时,应检查并调整气门间隙。 在调整气门间隙时,必须按厂家规定的数值去调整,并且使气门在完全关闭的情况下进行。调整气门间隙的位置:  相似文献   

15.
薛福连 《汽车运用》2012,(11):44-44
气门损坏气门损坏有以下形式和原因:①气门烧蚀。主要是排气门,由于材质不良或排气温度过高,引起气门锥面烧蚀;或者因气门座变形,引起锥面烧蚀。此外,气门间隙太小,或气门弹簧太软,造成漏气而将气门烧蚀。②气门断头。多数是制造质量所引起。气门断头对柴油发动机来说是很危险的,气门头掉到活塞顶部,会把活塞与汽缸盖顶坏。当气门间隙过小或汽缸内有异物时,将顶坏气门头,甚至使其断头。③气门座圈脱落。  相似文献   

16.
气门间隙的调整方法很多 ,常见的有单缸简易调整法、双排不进调整法等。这些方法对有些发动机的气门间隙的调整就不太准确 ,影响了发动机的功率输出。为准确地确定气门间隙的调整顺序 ,正确地调整间隙 ,下面介绍一相位确定气门的调整顺序的方法 ,简称相位调整法。1 调整原理图 1 气门间隙变化的三种状态凸轮面上对应的气门间隙的变化可分为三个状态 (图 1 ) :气门间隙最大状态 (可调气门间隙 )、气门间隙变化状态 (不可调 )、气门间隙最小状态 (无间隙 ,不可调 )。气门间障变化状态是一个过渡状态 ,约为 5 0°左右 ,因此避免在气门开启前 …  相似文献   

17.
气门座圈和气门对内燃机的性能、排放和可靠性起着重要作用。这些零件失效会导致内燃机性能恶化。由于压缩天然气(CNG)发动机的燃烧环境干燥,工作温度较高,会对气门座圈和气门的寿命产生不利的影响。Greaves cotton公司开发了1台由柴油机改制的单缸水冷气道喷射CNG发动机。开发中遇到的主要挑战是气门座圈和气门的磨损。为了避免故障,在座圈材料适应性、座面锥角、座面宽度、气门头部刚度、座圈与气门的同轴度和气门落座速度几方面进行了设计改进。通过修改设计成功地解决了气门和气门座圈的磨损问题,并通过发动机台架试验和车辆试验得到了验证。  相似文献   

18.
王敏 《装备维修技术》2009,(1):21-21,27
分析了内燃机气门头厚度对气门座磨损及其下陷量对燃烧性能的影响,气门和气门座接触面宽度与烧蚀、斑点形成的关系,气门落座拍击压强与耐磨性。对原配对互研工艺进行了改进,从保证气门落座压强及避免气门头弹性变形磨损等方面提出了改进意见。  相似文献   

19.
一、气门间隙的意义 进、排气门头部直接位于燃烧室内,而排气门整个头部又位于排气通道内,因此受到的温度很高。在如此高温下,气门会因受热膨胀而伸长。由于气门传动组零件都是刚性体,假如在冷态时各零件之间不留有气门间隙,受热膨胀的气门就会使气门关闭不严而漏气,导致发动机功率下降、燃油消耗增加、  相似文献   

20.
发动机无凸轮轴气门驱动的研究与进展   总被引:16,自引:1,他引:16  
阐述了在发动机上以电磁、电液、电气或其他方式驱动气门 ,实现无凸轮轴气门驱动 ,可以灵活改变气门正时 ,简化发动机结构 ,能有选择地闭缸 ,灵活改变发动机有效压缩比以适应多种燃料要求 ,使发动机获得比采用一般可变气门驱动更多的好处。无凸轮轴气门驱动的主要问题是响应速度不够高、气门落座冲击、能耗过高以及驱动系统复杂昂贵。目前无凸轮轴气门驱动还未达到大规模实用化的程度  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号