首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
文中基于HyperWorks的拓扑优化技术对某商用车的转向垂臂进行轻量化设计,根据转向垂臂的受载与典型工况,对转向垂臂进行静力分析,并建立垂臂的拓扑优化模型;在垂臂拓扑优化结果的基础上对垂臂进行二次设计,对比优化前后的垂臂结构发现:新结构在维持原始、强度刚度基本不变的情况下质量减轻13.02%,实现了垂臂结构轻量化设计。  相似文献   

2.
基于Hyperworks软件对某纯电动客车车身结构进行有限元分析并采用拓扑优化方法对车身结构进行了轻量化研究。建立了大客车骨架结构的有限元模型并对其进行静力分析与模态分析。对大客车骨架结构进行拓扑优化设计并根据拓扑优化分析结果、车身骨架的设计要求和制造工艺要求,获得了拓扑优化后的车身骨架结构。对优化前后的大客车骨架结构性能进行对比分析,结果表明:在满足工程要求的前提下,优化后的车身骨架减重率为6.76%,取得了一定的轻量化效果。  相似文献   

3.
在对长大平车车体进行静强度和疲劳强度分析的基础上,分析关键部位的位移和应力指标对车体结构板材厚度的灵敏度,并基于灵敏度信息确定主要板材结构的拓扑优化模型,利用优化求解器进行拓扑优化.基于拓扑优化结果,给出车体结构的新设计方案并校核其静强度及疲劳强度.新设计方案在保证车体强度的同时,使车体减重1.3 t,较好地实现了车体轻量化的目的.优化结果为长大平车车体结构的创新设计提供了有价值的参考.  相似文献   

4.
为优化某内燃机车排障器的结构性能和轻量化设计,对其进行多工况载荷下的拓扑和尺寸优化设计.运用OptiStruct软件对排障器进行基于变密度法的结构拓扑优化设计,确定排障器加强肋板的分布.随后,在拓扑优化的基础上运用尺寸优化设计方法对其进行轻量化设计,并对优化后排障器的强度和质量进行分析比较.对比得出,优化后排障器在两工况下最大应力降幅明显,均超过20.00%,质量减轻9.29%,结构应力分布更加均匀、合理,轻量化效果明显,为某内燃机车排障器设计提供了可行方案.  相似文献   

5.
基于纯电动车对轻量化设计要求的提高,提出了基于CAE的结构优化设计来实现电机悬置支架的轻量化设计目标。首先建立了原支架结构的有限元分析模型,分析得到了原结构在4种工况下的应力及变形分布;在此基础上建立了拓扑优化设计模型,分别对前支架、后左支架及后右支架进行了结构优化设计,与原结构的强度进行了对比分析,结果表明优化后的电机悬置支架在保证强度及刚度满足要求的前提下,减重14.2%。  相似文献   

6.
依据某B型不锈钢地铁车冲击座静强度分析结果,以冲击座为研究对象,利用Opti Struct软件对两种工况下的冲击座结构进行拓扑优化.依据拓扑优化结果,同时考虑制造加工工艺及装配等因素,提出了两种冲击座改进方案.对比分析两种改进方案,确定了最优方案.最终结果表明:与冲击座原结构比较,最优方案的冲击座结构应力分布均匀,质量减少了33.0%,取得了良好的轻量化效果.为今后地铁车冲击座的设计和改进提供了有价值的参考.  相似文献   

7.
针对某款电动汽车差速器壳体结构的轻量化设计方法展开研究,基于Hypermesh有限元平台建立差速器壳体有限元模型,对其进行静力学分析以及模态分析,证明差速器壳体有足够的优化空间。以优化区域密度为设计变量,最大应力不超过材料屈服强度、一阶固有频率不小于主要激励引起的共振频率为约束,优化区域质量最小为目标,对差速器壳体结构进行拓扑优化。优化后的差速器壳体较优化前质量降低约13.6%,满足强度要求且固有频率较高,实现了差速器壳体的轻量化设计。  相似文献   

8.
利用子结构和拓扑优化相结合的技术,研究碳钢客车车体底架结构的稳定性问题.首先,在1280kN车钩压缩载荷作用下,对某碳钢车车体结构进行线性屈曲分析,指出底架薄板部位因纵向刚度不足导致其屈曲因子偏低;然后,开展整车级底架失稳区域的典型结构的基于屈曲响应的拓扑优化,分别将碳钢车车体底架侧门和端部区域的典型结构定义为非子结构,其它车体单元定义为超单元,它们的边界结点定义为出口结点;接着,依据两典型结构的拓扑优化结果,确定优化设计方案;最后,经整车级结构的稳定性分析,优化结构的屈曲因子分别提高了0.67和0.95.这种考虑屈曲响应的、借助子结构方法的整车级高效的底架拓扑优化技术可推广到车体其它部位的优化设计中.  相似文献   

9.
创建组合工况,采用加速度加载的仿真方法,基于变密度法和“包裹面”方案对电动物流车蓄电池支架进行结构拓扑优化,并通过尺寸优化对支架进行轻量化设计,得到符合性能和轻量化要求的结构设计方案。仿真结果表明,优化后的蓄电池支架整体刚度提高了10.5%,总质量降低了29.2%.  相似文献   

10.
以轻型卡车车架为研究对象,采用HyperMesh建立车架的有限元模型,分析车架的模态,得到原始车架的刚度和模态性能数据。利用OptiStruct对车架进行拓扑优化,并对优化后的模型进行静态及动态特性分析。分析结果表明:优化后的车架结构扭转刚度提高11.5%、一阶扭转频率增大36.7%、一阶弯曲频率提升11.7%,车架总体质量基本保持不变。基于有限元方法的拓扑优化技术应用在车架设计方面是可行的,采用此项技术可以大大提高车架的整体性能。  相似文献   

11.
为了提高轨道车轮的结构性能, 利用渐进结构拓扑优化方法(ESO)建立了轨道车轮的结构优化模型; 以双S型轨道车轮为设计蓝本, 分析了轨道车轮的辐板设计域, 提出了轨道车轮在多工况作用下的渐进结构拓扑优化方法; 介绍了利用渐进结构拓扑优化方法实现结构应力均匀化的优化思路; 根据《整体车轮技术检验》(UIC 510-5:2003)标准, 分别考虑了轨道车轮在直线工况、曲线工况和道岔通过工况, 不仅获得这3种典型工况共同作用下的拓扑优化结构, 而且还获得了3种典型工况依次作用下的6种拓扑结构; 对比了优化前后车轮辐板的应力, 并利用有限元工具验证了优化后车轮的辐板应力特性, 证明渐进结构拓扑优化方法的正确性和有效性。研究结果表明: 利用渐进结构拓扑优化方法对轨道车轮的拓扑优化是适用的; 在车轮质量不增加的前提下, 优化后车轮辐板的厚度增加且不等厚, 有效地减小应力集中, 降低结构应力; 对比原双S型车轮, 优化后6种车轮模型的结构性能均有所提升, 分别提高了16.6%、20.7%、22.5%、21.3%、20.1%和19.5%, 其中, 方案3的优化车轮在3种工况下辐板处的最大结构应力分别降低了4.0%、14.5%和6.7%。研究有助于轨道车轮结构强度的提高, 并对多工况耦合作用下轨道车轮结构优化具有重要的参考价值。   相似文献   

12.
Weight reduction has attracted much attention among ship designers and ship owners. In the present work, based on an improved bi-directional evolutionary structural optimization (BESO) method and surrogate model method, we propose a hybrid optimization method for the structural design optimization of beam-plate structures, which covers three optimization levels: dimension optimization, topology optimization and section optimization. The objective of the proposed optimization method is to minimize the weight of design object under a group of constraints. The kernel optimization procedure (KOP) uses BESO to obtain the optimal topology from a ground structure. To deal with beam-plate structures, the traditional BESO method is improved by using cubic box as the unit cell instead of solid unit to construct periodic lattice structure. In the first optimization level, a series of ground structures are generated based on different dimensional parameter combinations, the KOP is performed to all the ground structures, the response surface model of optimal objective values and dimension parameters is created, and then the optimal dimension parameters can be obtained. In the second optimization level, the optimal topology is obtained by using the KOP according to the optimal dimension parameters. In the third optimization level, response surface method (RSM) is used to determine the section parameters. The proposed method is applied to a hatch cover structure design. The locations and shapes of all the structural members are determined from an oversized ground structure. The results show that the proposed method leads to a greater weight saving, compared with the original design and genetic algorithm (GA) based optimization results.  相似文献   

13.
The hoist bracket links the rescue hoist with the helicopter cabin, and its structure design greatly affects the operation convenience and safety of the hoistman and lifeguard in the rescue process with a helicopter.This paper firstly builds the force model of the hoist and bracket, and gives five kinds of typical working conditions as the design ones of the bracket. Then this paper puts forward a design process of the hoist bracket based on the topology optimization and strength analysis with the 3D modeling and finite element analysis. This design process can make the bracket’s structure lightweight by achieving the optimal material layout under the conditions of maximizing the static stiffness or minimizing the compliance of the bracket. And this improves the dynamic performance of the helicopter, and reduces the fuel consumption and cost under the strength constraints. Finally,taking the design of the hoist bracket used in a rescue helicopter as an example, this paper illustrates the proposed model and method. The analysis results show that the mass of the hoist bracket decreases by 12.5% while the static stiffness of the hoist bracket is achieved. The optimization design results meet the strength requirements of the hoist.  相似文献   

14.
Crashworthiness is the most significant variable during lightweight design of vehicle structures.However,crashworthiness studies using the single substructure-based method are limited due to the negligence of interactions among substructures.Thus,a whole structure-based study was conducted for the lightweight design of a body-side structure.In this study,a full finite element model was firstly created and then modified into a simplified model for structural improvements,where the major load-carrying subassemblies were improved from the perspectives of crashworthiness and manufacturing costs.Finally,sensitivity analyses were conducted to further optimize the strength distribution,based on which an adaptive response surface method was employed for thickness optimization of the structure.It is found that through the structural improvements and optimizations,the weight of the structure was significantly reduced even when its crashworthiness was improved.This indicates that the whole structure-based method is effective for lightweight design of vehicle structures.  相似文献   

15.
针对三维空间刚架布局优化问题,以七自由度节点梁柱单元二阶弹性理论推导考虑构件几何非线性和截面翘曲变形的非线性刚度矩阵,通过整合梁柱单元非线性刚度矩阵对刚架结构进行整体的二阶弹性分析,建立满足刚架结构强度、刚度和稳定性要求的布局优化数值模型;并针对复杂刚架结构布局优化数值求解问题,改进遗传搜索算法(GA),提出可靠拓扑和引导型遗传算法双向控制方法(KLGA). 该方法一方面将拓扑变量从布局设计变量中分离,以构件重要度评定结构可靠拓扑变量组合,再与设计变量整合;另一方面将结构特有的引导信息加入算法中,为GA提供全局最优解的指引路径. 通过两种典型的刚架算例表明二阶效应模型和KLGA算法的可行性和有效性,例如算例2中基于二阶效应模型的KLGA得到的最优结构质量比GA减轻了24.5%,波动幅度从9.61%提升到1.39%,算法更加稳定.   相似文献   

16.
拓扑优化技术能在给定的设计空间内寻求最佳的材料分布。根据某越野车车架的实际尺寸建立其三维拓扑优化设计空间,以车架质量分数为约束条件,车架柔度最小为目标函数,对车架的弯曲工况进行了单工况拓扑优化设计,并针对这一工况选择不同的优化参数进行了多次优化计算,得到了一组相似的拓扑结构,分析并选择合适的拓扑优化参数。应用得到的拓扑优化参数,基于折衷规划的多目标拓扑优化设计方法,针对汽车使用情况选择合适的工况权重因子,对车架进行了3种工况下的多目标拓扑优化设计研究。  相似文献   

17.
为实现汽车结构件的轻量化设计,将以塑代钢和尺寸优化技术引入到金属制动储气筒设计中。参考QC/T 200-2015,使用OptiStruct对金属储气筒进行强度分析,并评价其结果。根据理论公式对轻质塑料PA66构成的新储气筒部件厚度进行估算,应用尺寸优化方法得到具体的各组件厚度。优化结果表明:新制动储气筒在满足强度标准要求的同时,质量减轻了56.5%。  相似文献   

18.
基于运动构件的拓扑优化方法研究   总被引:1,自引:1,他引:0  
针对运动机构中零件拓扑优化设计的问题,利用刚柔耦合动力学仿真分析为运动构件提供边界条件,进而利用惯性释放进行分析。利用惯性释放的方法可以保证复杂运动机构中零件拓扑优化方案的可信度。以转向连杆机构中某零部件为例,介绍了运动构件的拓扑优化新的设计思路。  相似文献   

19.
基于机电耦合的自适应桁架结构最优拓扑控制   总被引:1,自引:0,他引:1  
以自适应桁架结构为研究对象,发展了结构拓扑优化的理论,并将其应用于自适应结构的最优拓控制之中,首先求出了结构在设计荷载作用下的最优拓扑,然后考虑了两种情况下结构的拓扑重构,其一是结构同时又受到一随机外载的作用;其二是结构中某一在役单元突然失效,算例表明了方法的正确性和有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号