首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
研究目的:当使用人工地层冻结法建设地铁联络通道时,松散含水层中的渗流作用会对冻结土体产生影响.本文使用一种可控制渗流速度的人工冻结制样装置对粉土、粉砂进行冻结制样后,通过对冻结土进行单轴抗压试验并测定含冰量的方法探究渗流对人工冻结粉土、粉砂力学特性的影响,以及两种土质的水分迁移规律.研究结论:(1)渗流能明显提高粉土的...  相似文献   

2.
为分析冷冻温度和含水量对于砾石土抗剪强度参数的影响,通过室内试验对南宁地铁联络通道砾石土层进行冻结状态下的三轴剪切强度分析,研究围压、冷冻温度以及含水量对于其强度演变的影响,分别得到几个特征围压下的砾石土冻结强度与冷冻温度及含水量的关系。试验结果表明:砾石土的三轴剪切强度随着冷冻温度的降低而升高,温度效应明显;同时,含水量变化对于其剪切强度影响也十分显著,在试验研究范围内冻结砾石土偏应力峰值与含水量成一定的正相关性,随着含水量增加,冻结冰晶体含量随之升高进而引起土体胶结能力增大,相应的强度有所提升。该三轴剪切强度符合Mohr-Column准则,黏聚力与内摩擦角随着冷冻温度的降低而增大,随着含水量的增加而增加。同时,冷冻温度对于砾石土三轴剪切强度参数的影响受土体含水量变化影响显著。  相似文献   

3.
针对地铁隧道盾构进出洞冻结加固工程中,盾构机刀盘无法切割土体中钢制冻结管的难题,提出采用塑料管作为冻结管,以实现直接切割.为获得塑料管冻结时的冻结壁发展规律,采用实体物理模型试验与有限元模型分析相结合的方法进行研究.将模拟计算数据与实体物理模型试验数据进行对比,验证了有限元计算模型的准确性;基于该模型,研究不同因素对冻...  相似文献   

4.
以作者亲历的开创性的典型工程,展示了人工地层冻结近10年的发展历程。杨树浦水厂基坑冻结围护工程的独特大胆引用、北京地铁隧道水平冻结的技术攻关,上海、广州地铁隧道水平冻结技术的深化和完善,历史的机遇和从事地下工程建设的科技人员的不懈努力和艰苦奋斗,使得我国人工地层冻结技术跨越到一个新台阶。地层冷冻技术就像技术海洋中的一滴,映射出我国改革开放年代科学技术的蓬勃发展的光辉。  相似文献   

5.
针对长江中下游地区广泛分布的南京砂,使用GDS动三轴系统分别在地震荷载和地铁列车振动荷载作用下进行动三轴试验,研究人工冻结对南京砂液化特性的影响及其机理,并判别2种荷载对南京砂冻结施工的潜在危险.结果 表明:在地震荷载和地铁列车振动荷载作用下,冻融循环均会明显降低南京砂的刚度和抗液化能力,首次冻融最为明显;冻融次数越多...  相似文献   

6.
第三系富水粉细砂岩地层,遇水软化稳定性差,极易产生流砂现象.以兰州地铁某地下四层深大车站基坑支护局部冻结工程为例,从冻结单管温度场分析富水粉细砂岩地层冻结法的适用性,并结合设计方案,研究设计参数的取值范围;根据局部冻结区域的测温管监测数据,研究测温管温度随时间的发展规律与不同时间点的地层竖向温度分布规律;结合冻结施工过...  相似文献   

7.
随着大量富水地区地下工程的建设,地下工程对地下水渗流条件的改变导致的环境问题不断凸显。根据 一维渗流理论,对未建地铁车站时的地下水渗流情况进行分析,并结合镜像原理及叠加原理,分析地铁车站对地 下水渗流的影响机制,得到受地铁车站阻隔作用的地下水壅高值及地下水流量的解析式。运用所得到的理论公式, 分析济南某地铁车站因受车站阻隔作用引起的地下水位壅高、地下水流量变化等,并提出考虑地下水壅高的抗浮 设防水位建议值。研究表明,车站处因受到阻隔作用而产生的地下水壅高值与含水层影响半径、水力坡度等有 关。在实际工作中,当遇到具有一定的水力坡度的强透水含水层时,地铁车站建成后可能产生的地下水壅高应当 引起工程人员的重视。  相似文献   

8.
水平冻结法施工杯型冻土壁温度场影响参数分析   总被引:3,自引:2,他引:1  
依托于某地铁车站盾构出洞水平冻结加固工程,利用经验证的模型和计算方法,研究了盐水温度、冻结管间距、冻结管直径和不同土层4大因素对杯型冻土壁温度场的影响。得出了各因素对杯型冻土壁温度场的影响规律:冻结管间距大小对冻结的影响,主要表现为第一阶段相邻冻结管交圈时间的快慢,进而影响整个冻土壁达到设计厚度所需的冻结时间;砂质粉土的温度下降速率比粉质黏土要快,在冻结中前期下降的速率更加明显,后期影响并不显著;单从冻结时间考虑,冻结管内盐水温度越低越好;冻结管直径的增大在冻结前期对土体温度下降速率的影响尤其明显。  相似文献   

9.
上海城市轨道交通某线在冻结法加固盾构进出洞工程在穿越一中间风井时采用水平杯型冻结技术。通过冻结温度场分析,验证了该风井处进出洞冻结工程设计中杯身冻结器比杯底冻结器长1.1 m的合理性,同时验证了水平杯型冻结壁设计在盾构机进出洞冻结工程设计中的科学性,为同类工程设计和施工提供借鉴。  相似文献   

10.
地下水对新建隧道工程具有诸多不良影响,通过现场调研和资料整理,对董志塬区黄土地层性质和地下水分布特征进行系统总结,分析董志塬地下水对银西高铁隧道工程的影响。结果表明:(1)董志塬区黄土物理力学性质随地层岩性、位置和地下水位变化存在一定的差异性,含水率和液性指数从塬边南部向塬边北部依次减小,孔隙比和压缩模量从塬边南部向塬边北部依次增大;(2)董志塬区地下水位埋深在塬心浅而塬边深,北塬地下水位埋深略比南塬深;含水层厚度则在塬心比较厚,而向塬边逐渐减小;(3)董志塬区地下水对银西高铁黄土隧道工程的主要不良影响有:引发黄土湿陷性;形成软塑状黄土;导致隧道管涌、涌水、塌方、冒顶事故等。  相似文献   

11.
为了研究人工冻结法施工联络通道中近隧道端土体温度场的分布规律以及管片散热对土体温度场的影响,采用现场实测和数值计算的方法,对土体温度场分布、冻结壁厚度和管片保温措施进行分析。结果表明:土体温度、冻结壁扩展厚度均随深度的增加呈指数型变化,当深度大于2.2 m时冻结壁厚度和冻土温度场基本稳定;联络通道的冻结壁沿长度方向可划分为2侧交界面段与正常冻结段;冻结管间距是影响交界面段冻结壁厚度的重要因素之一,因此辅助冻结面冻结壁是联络通道施工中的主要风险点之一;管片散热对土体影响范围与冻结时间呈对数关系,随着冻结时间的延长,影响范围将逐步扩大;为保证交界面区域的冻结效果,可在钢管片内部靠近土体一侧增设5 cm夹心保温层或改良管片壁后注浆材料2种管片保温,优化后交界面靠近管片位置冻结壁厚度可提升约24%。  相似文献   

12.
基于考虑相变的热固耦合理论,采用GEO-SLOPE软件模拟地铁联络横通道水平冻结和开挖施工过程,分析地层温度场和位移场的变化规律。结果表明:隧道冻结帷幕交圈的时间约为26d,但需积极冻结到40d,冻结帷幕平均厚度达到120cm,再经过36d的维护冻结期才可实施开挖;在维护冻结期采用比积极冻结期略高的盐水温度,防止了冻土范围继续扩大,避免了隧道开挖过程中遭遇强度较高的冻土;在进行具体的冻结设计时,应结合地层和隧道轮廓线的特点,设定冻结盐水温度、冻结时间、冻结管间距和冻结管数量等参数;对比分析不同冻结帷幕保护下隧道开挖的地层位移场,结果证明冻结对抑制地层变形具有良好的效果,但需要足够的冻结时间方可将地表变形限制在可接受的范围内。  相似文献   

13.
随着土压平衡盾构的广泛推广和应用,其地层适应性也越来越强,但盾构机在一些特殊地层中掘进时,渣土无法满足盾构施工对渣土流塑性的要求,易造成刀盘结饼、掌子面压力不稳定、刀盘磨损严重等问题。泡沫渣土改良技术是保证施工安全、顺利进行的关键技术之一。本文针对两种工程现场常用的泡沫进行泡沫基础性能试验,并以南昌地铁3号线盾构区间为工程背景,针对该区间砾砂地层进行改良渣土坍落度试验,对不同注入率和不同发泡剂的改良效果进行分析。研究发现,两种泡沫剂的建议使用浓度为3%;渣土流动性随泡沫注入率的增大而提高。在试验所用土样条件下,建议施工时使用的泡沫注入率为20%~30%。  相似文献   

14.
为了研究寒区隧道的防寒保温设计问题,采用数值分析方法探讨不同外界气温、围岩地温以及有无保温层等条件下寒区隧道温度场的分布规律和保温层适应性研究,并采用叠加原理、分离变量法和贝塞尔特征函数建立列车风影响下寒区隧道温度场的计算模型,分析有无列车运行条件下寒区隧道温度场的变化规律。研究结果表明:由于二衬后出现负温分布对隧道衬砌结构安全性影响较大,因此建议将二衬后不出现负温分布作为寒区隧道保温措施的控制指标;在不考虑列车风影响条件下,保温层法最佳适用于最冷月平均气温为-2~-15℃的地区,当最冷月平均气温低于-15℃、围岩地温低于5℃时,保温层法应与主动保温措施相结合;当列车运行速度为300km/h、运行间隔为30 min时,通车与不通车相比隧道洞内中间位置平均气温下降约1.22℃,二衬后沿隧道进深方向出现负温的距离约增加36.8%。  相似文献   

15.
冰-水相变对寒区隧道动态温度场影响研究   总被引:1,自引:1,他引:0  
为了揭示冰-水相变对寒区隧道动态温度场的影响,通过建立隧道有限元模型,对比分析考虑相变与否两种情况下隧道温度场的动态变化,研究隧道在内部气温变化作用下的冰-水相变发展过程。研究表明:围岩内部温度随深度增加而升高,年变化幅度逐渐减小,变化相位逐渐滞后;考虑冰-水相变后,隧道温度场年动态变化过程改变较大,温度年变化幅度显著减小;在外界低温的作用下,主洞与导洞部位均有结冰现象,衬砌和围岩内部在1月份开始结冰,4月份之后完全冻结区消失,仅在衬砌和围岩存在冰水混合区,至7月份完全解冻,解冻后重新冻结的月份为10月份,之后冻结范围逐渐扩大,全年冻结发展最快的时间为11月份。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号