首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
正交异性钢桥面板横隔板切口处疲劳问题突出,裂纹通常萌生于切口自由边以及切口起始处纵肋-横隔板连接焊缝。为研究不同切口型式对疲劳细节应力的影响,建立有限元分析模型,获得细节在轮载下的应力响应。研究结果表明:切口自由边细节是面内应力主导,且较大的切口半径有利于降低应力水平;纵肋腹板在平行于焊缝方向的外侧应力最大,属于纵肋-横隔板连接焊缝中最不利的细节,因此该连接处的裂纹通常会萌生于焊缝末端的纵肋腹板外侧,并沿垂直于焊缝的方向扩展;对于纵肋-横隔板连接焊缝的横隔板细节,当切口型式为相切过渡的方式时,面外应力远小于垂直过渡的方式,而面内应力相反;采用Eurocode 3中推荐的切口型式是合适的。  相似文献   

2.
为研究UHPC组合桥面铺装下纵肋-面板构造细节的疲劳性能,开展随机车流作用下的佛陈扩建西桥疲劳试验。研究结果表明:纵肋-面板构造细节面板侧应力幅显著小于纵肋侧,说明UHPC桥面铺装显著增大了桥面刚度,减小了面板的局部应力响应,并显著减少了通行货车对面板的疲劳加载次数。纵肋-面板构造细节能清晰地分辨每个单轴,也即货车每个轴均能产生一个应力幅。在当前随机车流作用下,纵肋-面板构造细节的最大应力幅都小于其常幅疲劳极限,可知佛陈扩建西桥纵肋-面板构造细节具有无限疲劳寿命。  相似文献   

3.
正交异性钢桥面板节段模型疲劳性能试验研究   总被引:3,自引:0,他引:3  
设计3个正交异性钢桥面板的节段模型,进行系统的静载试验和疲劳试验,研究不同构造对正交异性钢桥面板受力和疲劳性能的影响.结果表明:面板的厚度对U肋与面板连接焊缝构造的应力影响显著,建议正交异性钢桥面板的面板厚度取为14mm以上;横隔板的间距对横隔板与U肋焊缝交叉处的面外应力、横隔板的面外变形、中间U肋的竖向变形有直接的影响;弧形开孔处的应力随横隔板的厚度增加而降低;正交异性钢桥面板上由次应力引起的裂纹的扩展比较缓慢,不会直接影响整个桥面结构的承载能力;横隔板与U肋相交处上部留有过焊孔这一构造细节对正交异性钢桥面板的疲劳性能不利.  相似文献   

4.
为研究纵肋-横隔板(rib-to-floorbeam,RF)焊缝模拟与否及焊缝模拟数量对正交异性钢桥面板各疲劳敏感细节应力响应的影响,分别建立无RF焊缝及不同数量RF焊缝的正交异性钢桥面板有限元模型,计算轮载作用下各构造细节的应力响应.为提高计算速度与精度,RF焊缝采用体单元模拟,桥面板其他构件采用壳单元模拟,通过约束方程实现体-壳耦合.研究结果表明:模拟RF焊缝时,RF横隔板侧和纵肋侧构造细节的应力幅分别增大66%和54%,其对应的计算疲劳寿命更接近实桥出现裂纹的时间;模拟RF焊缝对弧形切口和RD构造细节应力响应几乎无影响.模拟不同数量RF焊缝对各构造细节应力响应无明显差别;相比于不模拟焊缝的情况,模拟焊缝可以清楚地显示RF焊缝沿高度方向上的应力分布,纵肋和横隔板的连接部位应力过渡更加平滑.  相似文献   

5.
在正交异性钢桥面板中,横梁腹板与纵肋连接部位及横梁腹板切口边缘处较容易发生疲劳开裂,为了弄清横梁腹板切口形状对这两个构造细节疲劳性能的影响规律,采用有限单元法,通过在3种作用下采用不同切口形状的正交异性板各考察点主拉应力或面外应力比率的对比研究,得出以下结论:(1)在剪切作用下,切口形状对纵肋与横梁连接部位的应力影响不大,切口边缘半径对横梁切口边缘拉应力影响很大;(2)在支撑作用下,切口尺寸越大,纵肋与横梁连接部位的应力越大;(3)在面外作用下,切口尺寸越大,横梁对纵肋的面外转动变形约束越小,面外应力比率越小。  相似文献   

6.
为深化认识大挑臂钢箱梁正交异性钢桥面板的疲劳问题,以世界首座公铁同层大挑臂钢箱梁斜拉桥——金海大桥为背景,采用ANSYS软件建立钢箱梁节段精细化有限元模型,分析了多种工况下箱梁在有挑臂和无挑臂处顶板、U肋及横隔板关键疲劳细节的应力状态、应力影响面等,并对比分析了箱梁疲劳特性在横桥向的差异。结果表明,大挑臂钢箱梁的顶板-U肋细节应力影响面长宽约为2个U肋和2道横隔板,与普通闭口钢箱梁无异,而横隔板-U肋细节应力影响面长宽约为7个U肋和3道横隔板,远超普通闭口钢箱梁同类细节应力影响范围;箱梁在不同区域的部分同类疲劳细节受力状态存在明显差异,沿纵桥向,分别在有挑臂和无挑臂处的横隔板开孔底边细节应力差距高达85.4%;沿横桥向,靠近箱梁中心线的内侧车道为最不利加载车道,该车道内横隔板侧边开孔细节最不利应力幅可高出其他车道57%;箱梁各疲劳细节对轮载横向分布位置十分敏感,其沿横桥向疲劳特性差异主要由横梁整体弯剪变形引起,同时,邻车道疲劳荷载对横隔板侧边开孔细节应力幅影响超过38%。因此,多车效应不宜忽略,根据重车车流量统计推算,本桥多车效应系数建议取值1.05。  相似文献   

7.
为研究车辆通行下正交异性钢箱梁面板-纵隔板构造细节轮载应力特征,建立带纵隔板的正交异性钢桥面板有限元分析模型,计算并对比轮载沿不同横桥向位置在纵桥向移动工况,面板-纵隔板构造细节及横桥向两侧疲劳敏感构造细节的应力响应。研究结果表明:纵肋-面板和纵隔板-面板构造细节均可分辨轴组中的单轴,因此,在疲劳荷载模型三规定的车辆通行下,每个构造细节将产生4个应力循环;应力峰值均发生在顺桥向两联轴的其中一个轮轴作用应力监测位置的正上方;当横桥向轮载中心位于纵隔板正上方时,纵肋-面板构造细节将在面板侧产生比其他横桥向轮载工况下更大的应力响应和应力幅;当桥面轮载从纵隔板一侧移动到另外一侧,或货车变道,或货车蛇行,均将导致纵隔板-面板构造细节的纵隔板侧产生较大的拉压应力幅。在设计带纵隔板的正交异性钢桥面板时,纵隔板不应布置在车道轮迹线正下方或紧靠车道轮迹线,而应远离车道轮迹线布置。且桥梁管理单位宜在桥面设置明显的标识,禁止桥面货车变道。  相似文献   

8.
<正>交异性钢桥面板的纵肋与横肋连接是受力较复杂、病害较多构造部位。选取横肋腹板空孔、纵肋内隔板设置、纵肋与横肋间焊缝、横肋过焊孔等4个主要构造细节,从受力特性、病害及其治理、工程试验、加工工艺、各国规范发展等角度,系统地汇总正交异性钢桥面板纵肋与横肋连接构造的演变历程和发展现状,并总结经验教训。  相似文献   

9.
研究目的:为研究高速铁路大跨连续钢桁梁柔性拱桥正交异性钢桥面板疲劳细节的局部受力,本文以银西高铁银川机场黄河特大桥为背景,建立横梁弧形切口以及U肋与顶板连接焊缝两处疲劳细节的精细化有限元模型,分析列车移动荷载作用下疲劳细节处的应力分布,并对比分析不同弧形切口形状和横梁腹板厚度对疲劳细节局部应力的影响规律。研究结论:(1)正交异性钢桥面的U肋-横梁位置的弧形切口处在移动活载下容易出现应力集中,且弧形切口起始处与弧形切口自由边所对应的最不利活载位置不同,在轨枕横向两侧端部下方的横梁弧形切口起始处以及弧形切口自由边容易出现最大主应力;(2)横梁板厚对弧形切口自由边的主压应力影响最大,且随板厚增大该处主压应力减小,对本工程当板厚由16 mm增加至20 mm时,主压应力减小幅度超过20%;(3)不同弧形切口形状对疲劳细节的局部应力也有较大影响,与原设计切口形状相比,日本设计规范所推荐切口形状的主应力极值最小;(4)为提高正交异性钢桥面板的疲劳特性,对U肋-横梁疲劳细节进行局部构造优化是必要的,研究成果对同类型结构的优化设计具有理论指导意义。  相似文献   

10.
鉴于正交异性钢桥面板在铁路桥梁上应用的增多及其疲劳裂纹的多发性,分析了正交异性钢桥面板疲劳裂纹的成因,系统地汇总了正交异性钢桥面板纵肋截面、纵肋与面板连接、横肋与面板连接、纵肋与横肋交叉部位、钢桥面板现场连接形式、U型肋形式等构造细节的演变历程及各国规范相关最新研究成果和规定.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号