首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Three Argos buoy-years of Lagrangian data in westward-moving cyclonic eddies, or Storms, near 32.5°N, together with hydrographic measurements, have shown that Storms move westward at nearly 3 km day−1. Water in eddies can be trapped and moved westward by advection within the eddy or by phase propagation of the eddy pattern, so we cannot say that the flow field (or Eulerian mean) is 3 km day−1 westward. Two moorings (155 and 156) deployed in the Storm Corridor have provided a further 8 instrument-years of Eulerian data. The temperature and current records confirmed that two Storms a year passed each mooring over the 2-year measurement period. As expected, there is a lag of 1.3 month at mooring 155 (which is 102 km to the west of mooring 156) with respect to conditions at mooring 156. The progressive vector diagrams (PVDs) derived from the current meter records exhibit fairly regular X (east or zonal) and Y (north or meridional) displacement scales that repeat with semi-annual periodicity (SAP). The dominant current signal is the north component of the SAP, which reaches an amplitude of 18 cm s−1 for the upper layer or near surface current record (242-m depth). The geostrophic north component values derived from altimetry were in good agreement with the upper layer current meter measurements. The large north component amplitude was not interpreted as evidence for Rossby Waves but rather due to the passage of nine eddies (eight complete) of alternate sign (cyclonic, anticyclonic) passing the mooring rigs during the 2-year deployment period. The Y scale shows that the near surface characteristic or mean maximum azimuthal speed is about 35 cm s−1 for cyclonic eddies or Storms, and that this value is reduced to 4 cm s−1 at 1400-m depth. The residual or mean Eulerian currents range from 8 cm s−1 for the upper layer currents to 1 cm s−1 for the deeper currents at 1400-m depth and are predominantly westward. Simple theoretical considerations and idealised numerical simulations show that the mean westward Eulerian current depends markedly on whether the eddy centres pass to the north or south of the rigs. This raises the question as to what do we mean by Eulerian residual currents, even for relatively long records (2 years). It is shown that the strong near surface westward current (6 km day−1) measured at mooring 155 is largely due to a westward-moving eddy field with variable centre offsets. The magnitude of the near surface east–west component of flow was estimated as eastward at 2 cm s−1. The north–south component of mean flow was southward at 2 cm s−1. The deeper records gave a weak westward flow of 1 cm s−1 but did not show a significant southward component for the mean Eulerian flow field. 7.4 float-years of Lagrangian ALACE data in the Subtropical Front region near 740 dbar gave mean east–west flows that were <0.5 cm s−1. Overall, it is shown that the eddy structures propagate westward mainly by phase propagation (i.e. a westward-moving pattern with no westward advection for the current meter to measure), though plane Rossby Wave dynamics appeared inappropriate. Theoretical and modeling considerations show that a speed of 3-km day−1 westward is too large a value for the self-advection of eddies due to the beta effect.  相似文献   

2.
Surface current data from drifting buoys and remotely sensed wind data recorded over the continental shelf in the northeastern Gulf of Mexico during the passage of tropical storm Josephine in October 1996 are examined. Drifter data show the existence of a strong surface jet (velocities reaching 1 m s−1) that moves up the west Florida shelf and westward along the Louisiana–Texas shelf, and lasts for nearly 1 week. The coastal jet occurs during an intense synoptic scale wind event where wind speeds reach 15 m s−1. A simple force balance and statistical analysis are performed to assess the role of strong wind forcing. The primary balance shows an Ekman-type current. The role of local acceleration is greatest when winds are directed along bathymetry. A simple two-dimensional strongly forced shelf response model developed from the linear steady-state momentum equations also indicates larger along-shore currents due to both Ekman-type forcing by cross-shore winds and a cross-shore pressure gradient arising from conservation of mass. Model parameters fit empirically are within 15% of theoretical values. The simple model explains 30% and 46% of the variance in the observed along-shore and cross-shore surface currents, respectively.  相似文献   

3.
A full-spectral third-generation ocean wind–wave model (Wavewatch-III) implemented in the South China Sea is used to investigate the effects of the wave boundary layer on the drag coefficient and the sea-to-air transfer velocity of dimethylsulfide (DMS) during passage of Typhoon Wukong (September 5–11, 2000) with a maximum sustained wind speed of 38 m s− 1. The model is driven by the reanalyzed surface winds (1° × 1°, four times daily) from the National Centers for Environmental Prediction. It is found that the wave boundary layer evidently enhances (16.5%) the drag coefficient (in turn increases the momentum flux across the air–sea interface), and reduces (13.1%) the sea-to-air DMS transfer velocity (in turn decreases the sea-to-air DMS flux). This indicates the possibility of important roles of wave boundary layer in atmospheric DMS contents and global climate system.  相似文献   

4.
We use hydrographic, current, and microstructure measurements, and tide-forced ocean models, to estimate benthic and interfacial mixing impacting the evolution of a bottom-trapped outflow of dense shelf water from the Drygalski Trough in the northwestern Ross Sea. During summer 2003 an energetic outflow was observed from the outer shelf ( 500 m isobath) to the  1600 m isobath on the continental slope. Outflow thickness was as great as  200 m, and mean speeds were  0.6 m s− 1 relative to background currents exceeding  1 m s− 1 that were primarily tidal in origin. No outflow was detected on the slope in winter 2004, although a thin layer of dense shelf water was present on the outer shelf. When the outflow was well-developed, the estimated benthic stress was of order one Pascal and the bulk Froude number over the upper slope exceeded one. Diapycnal scalar diffusivity (Kz) values in the transition region at the top of the outflow, estimated from Thorpe-scale analysis of potential density and measurements of microscale temperature gradient from sensors attached to the CTD rosette, were of order 10− 3−10− 2 m2 s− 1. For two cases where the upper outflow boundary was particularly sharply defined, entrainment rate we was estimated from Kz and bulk outflow parameters to be  10− 3 m s− 1 ( 100 m day− 1). A tide-forced, three-dimensional primitive equation ocean model with Mellor-Yamada level 2.5 turbulence closure scheme for diapycnal mixing yields results consistent with a significant tidal role in mixing associated with benthic stress and shear within the stratified ocean interior.  相似文献   

5.
Air–sea flux measurements of O2 and N2 obtained during Hurricane Frances in September 2004 [D'Asaro, E. A. and McNeil, C. L., 2006. Measurements of air–sea gas exchange at extreme wind speeds. Journal Marine Systems, this edition.] using air-deployed neutrally buoyant floats reveal the first evidence of a new regime of air–sea gas transfer occurring at wind speeds in excess of 35 m s− 1. In this regime, plumes of bubbles 1 mm and smaller in size are transported down from near the surface of the ocean to greater depths by vertical turbulent currents with speeds up to 20−30 cm s− 1. These bubble plumes mostly dissolve before reaching a depth of approximately 20 m as a result of hydrostatic compression. Injection of air into the ocean by this mechanism results in the invasion of gases in proportion to their tropospheric molar gas ratios, and further supersaturation of less soluble gases. A new formulation for air–sea fluxes of weakly soluble gases as a function of wind speed is proposed to extend existing formulations [Woolf, D.K, 1997. Bubbles and their role in gas exchange. In: Liss, P.S., and Duce, R.A., (Eds.), The Sea Surface and Global Change. Cambridge University Press, Cambridge, UK, pp. 173–205.] to span the entire natural range of wind speeds over the open ocean, which includes hurricanes. The new formulation has separate contributions to air–sea gas flux from: 1) non-supersaturating near-surface equilibration processes, which include direct transfer associated with the air–sea interface and ventilation associated with surface wave breaking; 2) partial dissolution of bubbles smaller than 1 mm that mix into the ocean via turbulence; and 3) complete dissolution of bubbles of up to 1 mm in size via subduction of bubble plumes. The model can be simplified by combining “surface equilibration” terms that allow exchange of gases into and out of the ocean, and “gas injection” terms that only allow gas to enter the ocean. The model was tested against the Hurricane Frances data set. Although all the model parameters cannot be determined uniquely, some features are clear. The fluxes due to the surface equilibration terms, estimated both from data and from model inversions, increase rapidly at high wind speed but are still far below those predicted using the cubic parameterization of Wanninkhof and McGillis [Wannikhof, R. and McGillis, W.R., 1999. A cubic relationship between air–sea CO2 exchange and wind speed. Geophysical Research Letters, 26:1889–1892.] at high wind speed. The fluxes due to gas injection terms increase with wind speed even more rapidly, causing bubble injection to dominate at the highest wind speeds.  相似文献   

6.
With the large deployment, the Array for Real-time Geostrophic Oceanography program has great potential for measuring the ocean currents both on the surface and at mid-depth. However the positioning error of fixes in a trajectory varies from 150 m to 1000 m, and thus created difficulty for accurate estimations of the surface and mid-depth currents. Also the reliability of the estimated surface and mid-depth currents requires accurate error estimations.In this study a new sequential method of Argo float surface trajectory tracking and extrapolating is proposed based on Kalman Filter (KF), under the presumption that a surface trajectory of Argo float is dominated by a constant current plus inertial oscillation. This trajectory tracking and extrapolating method is able to reduce the positioning uncertainties of Argo surface trajectories and provides error estimations. When this method was applied to extrapolate the positions when float resurfacing and descending, the estimation error of the mid-depth currents can be reduced. Utilizing this method in the Pacific, surface and mid-depth currents were estimated from surface trajectories of Argo floats from 2001 to 2004, along with their detailed error estimations. The average error for surface currents is about 4.4 cm s− 1 which is equivalent to the accuracy order (5 cm s− 1) of the Surface Velocity Program drifters. The estimation error of the mid-depth currents at 1000 db is reduced to about 0.21 cm s− 1 without considering the effect of vertical shear.This study shows that the surface trajectory from Argo float provides a new means to measure surface circulations in the global ocean at real time, and that the estimated mid-depth current could be one of the important sources to improve the understanding for ocean dynamic.  相似文献   

7.
The shelf-slope front (SSF) is a continuous shelf-break front running from the Tail of the Grand Banks to Cape Hatteras, North Carolina, separating colder and less-saline continental shelf waters from warmer and more saline slope waters. Time series containing mean monthly SSF positions were produced along each of 26 longitude lines between 75° and 50°W by workers located at Bedford Institute of Oceanography by digitizing individual frontal charts and computing mean monthly latitudinal positions over a 29-year (1973–2001) period. After removing seasonal variability at each longitude, interannual variability (IAV) of the SSF position at each longitude was computed as the annual mean of all monthly SSF position anomalies for each year over the 29-year period. Despite some missing data, a longitude-time plot reveals alternating bands of offshore (late-1970s, late-1980s, late-1990s) and onshore (early-1980s, early-1990s, early-2000s) annual mean SSF anomaly values, exhibiting a period of approximately 10 years. Annual mean SSF anomaly amplitudes are largest in the east, with maxima of O (± 100 km) located east of 60° W for years when data are available. Empirical orthogonal function (EOF) modes 1–4 (accounting for > 90% of the variance) form a set of basis functions that describe the SSF anomaly data and allow reconstruction of the entire data set since missing data are relatively few (14%). A complex empirical orthogonal function (CEOF) analysis using the “reconstructed” data reveals a wavelength scale of approximately 20° of longitude, a distance nearly equal to the entire study domain, along with steady, westward phase propagation of SSF anomalies over approximately the same distance. Speed calculations for the westward-propagating features yield a value of approximately 1.2 to 2.4 cm s− 1 (1 to 2 km d− 1), with annual mean SSF anomalies thus requiring about 4 years to propagate from the Tail of the Grand Banks in the east to Cape Hatteras, North Carolina, in the west. This propagation speed and the timing of the SSF positional anomalies at the Tail of the Grand Banks for the 29-year study period are in agreement with speeds computed for the propagation of quasi-decadal salinity anomalies through the Labrador Sea and the time of their arrival at the Tail of the Grand Banks. The small westward SSF anomaly propagation speed is an order of magnitude smaller than the associated currents, in agreement with a highly damped flow-through system originating from both Davis Strait and the West Greenland Current as discussed by other workers. Observations from both southern and northern portions of the study domain, within both continental shelf and slope waters, show that interannual changes in the volume of shelf water along with shelf water bulk properties exhibit a strong relationship with IAV of the SSF position over long time periods.  相似文献   

8.
Three drifters drogued at 65 m were launched on a transect on the Armorican shelf of the Bay of Biscay for 4 years. The experiments were conducted in autumn. They revealed a north-westward, poleward current over the 100 m isobath and a very weak eastward current over depths comprised between 120 and 150 m. A model was used to assess the role of residual tidal currents and wind-induced circulation. The results show that the former are quite weak and the latter do not explain the average velocity of over 10 cm s− 1. It is thought that this current is mainly driven by the density gradient induced by the breakdown of stratification. Hydrological data and satellite images from the period are discussed, in the light of this hypothesis.  相似文献   

9.
Primary production events in both the Arctic and the Antarctic are highly localized. Carbon-14 incubations that did not account for this caused antarctic primary production estimates to be revised too far downwards from the historic view of high productivity. The primary production regime in the Arctic is even more heterogeneous than in the Antarctic. Arctic primary production rates are in the process of being revised upwards because of a better spatial and temporal distribution of incubation experiments and a re-awakening of interest in estimating new production from the distribution of chemical variables. Similarly, recent examination of temporal changes in nitrate concentrations and recognition of the importance of ice-edge blooms has caused antarctic primary productivity to be revised upwards. In both the Arctic and the Antarctic, the ratio of “new” to total primary production is high, and neglect of this fact can lead to an underestimation of the potential that these regions have for influencing global cycles of bioactive chemicals. Some recent data on temporal changes in nitrate from Fram Strait emphasize the poor state of our knowledge by suggesting an unexpectedly high “new” production rate of 1 g C m−2 d−1 for a 35 day experiment that encountered an early Phaeocystis bloom. Chemical distributions suggest that new production over the shelf seas that border the Polar Basin is about 50 g Cm−2 yr−1.The shelves in the Arctic Ocean's marginal and adjacent seas comprise 25% of the total global continental shelf. These extensive shallow regions have much higher rates of primary production than the Polar Basin and may be globally significant sites of denitrification. Globally significant silica deposition could occur on these shelves or on the adjacent slopes.Because of the differences in geomorphology and stratification, global warming is likely to increase primary production in the Arctic and will probably decrease antarctic primary production.In addition to sharing high ratios of “new” to total primary production, high ammonium concentrations occur in the Arctic and Antarctic. It is possible that these accumulations arise from a strong repression of nitrification at low temperatures.  相似文献   

10.
Measurements of turbulence were performed in four frontal locations near the mouths of Block Island Sound (BIS) and Long Island Sound (LIS). These measurements extend from the offshore front associated with BIS and Mid-Atlantic Bight Shelf water, to the onshore fronts near the Montauk Point (MK) headland, and the Connecticut River plume front. The latter feature is closely associated with the major fresh water input to LIS. Turbulent kinetic energy (TKE) dissipation rate, ε, was obtained using shear probes mounted on an autonomous underwater vehicle. Offshore, the BIS estuarine outflow front showed, during spring season and ebb tide, maximum TKE dissipation rate, ε, estimates of order 10− 5 W/kg, with background values of order 10− 6 to 10− 9 W/kg. Edwards et al. [Edwards, C.A., Fake, T.A., and Bogden, P.S., 2004a. Spring–summer frontogenesis at the mouth of Block Island Sound: 1. A numerical investigation into tidal and buoyancy-forced motion. Journal of Geophysical Research 109 (C12021), doi:10.1029/2003JC002132.] model this front as the boundary of a tidally driven, baroclinically adjusted BIS flow around the MK headland eddy. At the entrance to BIS, near MK, two additional fronts are observed, one of which was over sand waves. For the headland site front east of MK, without sand waves, during ebb tide, ε estimates of 10− 5 to 10− 6 W/kg were observed. The model shows that this front is at the northern end of an anti-cyclonic headland eddy, and within a region of strong tidal mixing. For the headland site front further northeast over sand waves, maximum ε estimates were of order 10− 4 W/kg within a background of order 10− 7–10− 6 W/kg. From the model, this front is at the northeastern edge of the anti-cyclonic headland eddy and within the tidal mixing zone. For the Connecticut River plume front, a surface trapped plume, during ebb tide, maximum ε estimates of 10− 5 W/kg were obtained, within a background of 10− 6 to 10− 8 W/kg. Of all four fronts, the river plume front has the largest finescale mean-square shear, S2 ~ 0.15 s− 2. All of the frontal locations had local values of the buoyancy Reynolds number indicating strong isotropic turbulence at the dissipation scales. Local values of the Froude number indicated shear instability in all of the fronts.  相似文献   

11.
Vertical distribution of sound scattering layers were observed using bottom deployed acoustic doppler current profilers (ADCP) during early spring of 1996 and autumn of 1997 in the Gullmarsfjord on the Swedish west coast. Variations in relative backscatter were interpreted in relation to horizontal water velocities, oxygen saturation as well as differences in the light, salinity and temperature regimes. Net catches revealed that much of the backscatter below 20-m depth was associated with the presence of krill, principally Meganyctiphanes norvegica.Horizontal currents seemed to influence the migration and distribution of krill, which showed weak vertical migration patterns with low abundance during periods of strong intermediate in- and outflows, while during periods with weaker currents, a more regular diel migration occurred. Horizontal water velocities >5 cm s−1 seemed to have the potential to decrease the peak in the backscatter profile. Mean vertical migration rates of krill was 1 cm s−1, while maximum vertical migration rates were estimated to be 2.5–3 cm s−1. The range of the vertical migration was different in 1997 due to severe oxygen deficiency in the bottom water, which prevented the krill from descending >80 m. The commencement of vertical migration correlated closely to the seasonal light conditions. The descent was immediately triggered by sunrise, while ascent occurred with a delay of about 1 h at sunset.  相似文献   

12.
The Mackenzie River is the largest river on the North American side of the Arctic and its huge freshwater and sediment load impacts the Canadian Beaufort Shelf. Huge quantities of sediment and associated organic carbon are transported in the Mackenzie plume into the interior of the Arctic Ocean mainly during the freshet (May to September). Changing climate scenarios portend increased coastal erosion and resuspension that lead to altered river-shelf-slope particle budgets. We measured sedimentation rates, suspended particulate matter (SPM), particle size and settling rates during ice-free conditions in Kugmallit Bay (3–5 m depth). Additionally, measurements of erosion rate, critical shear stress, particle size distribution and resuspension threshold of bottom sediments were examined at four regionally contrasting sites (33–523 m depth) on the Canadian Beaufort Shelf using a new method for assessing sediment erosion. Wind induced resuspension was evidenced by a strong relationship between SPM and wind speed in Kugmallit Bay. Deployment of sediment traps showed decreasing sedimentation rates at sites along an inshore–offshore transect ranging from 5400 to 3700 g m− 2 day− 1. Particle settling rates and size distributions measured using a Perspex settling chamber showed strong relationships between equivalent spherical diameter (ESD) and particle settling rates (r= 0.91). Mean settling rates were 0.72 cm s− 1 with corresponding ESD values of 0.9 mm. Undisturbed sediment cores were exposed to shear stress in an attempt to compare differences in sediment stability across the shelf during September to October 2003. Shear was generated by vertically oscillating a perforated disc at controlled frequencies corresponding to calibrated shear velocity using a piston grid erosion device. Critical (Type I) erosion thresholds (u) varied between 1.1 and 1.3 cm s− 1 with no obvious differences in location. Sediments at the deepest site Amundsen Gulf displayed the highest erosion rates (22–54 g m− 2 min− 1) with resuspended particle sizes ranging from 100 to 930 µm for all sites. There was no indication of biotic influence on sediment stability, although our cores did not display a fluff layer of unconsolidated sediment. Concurrent studies in the delta and shelf region suggest the importance of a nepheloid layer which transports suspended particles to the slope. Continuous cycles of resuspension, deposition, and horizontal advection may intensify with reduction of sea ice in this region. Our measurements coupled with studies of circulation and cross-shelf exchange allow parameterization and modeling of particle dynamics and carbon fluxes under various climate change scenarios.  相似文献   

13.
Seasonal variability and the spatial distribution of sea surface temperatures (SST) and salinities (SSS) are reviewed, in relation to the prevailing climatological conditions, heat fluxes, water budget and general water circulation patterns. Within this context, consideration is given to: sea surface temperatures; air temperatures; precipitation; evaporation; wind speeds and directions; freshwater (mainly riverine) discharges throughout the Aegean; and the exchange of water masses with the Black Sea and eastern Mediterranean Sea. The investigation of satellite images, covering a 6-yr period (1988–1994), has enabled a synthesis of the monthly sea surface thermal distribution to be established.The climate of the Aegean Sea is characterised by annual air temperatures of 16–19.5°C, precipitation of about 500 mm yr−1 and evaporation of some 4 mm d−1. The Aegean has a negative heat budget (approximately −25 W m−2) and positive water balance (+ 1.0 m yr−1), when inflow from the Black Sea is considered. During the summer, the (northerly) Etesians are the dominant winds over the Sea.Mean monthly sea surface temperatures (SST) vary from 8°C in the north during winter, up to 26°C in the south during summer. SST depends mainly upon air temperature; there is a month's delay between the former and latter maxima. The sea surface salinity (SSS) varies also spatially and seasonally, ranging from less than 31 psu, in the north, to more than 39 psu, in the southeast; lower values (< 25 psu) occur adjacent to the river mouths. SSSs present their maximum differences during summer, whilst during winter and autumn the distribution of SSS is more uniform. The overall spatial SST and SSS distribution pattern is controlled by: distribution of the (colder) Black Sea Waters; advection of the (warmer) Levantine Waters, from the southeastern part of the Aegean; upwelling and downwelling; and, to a lesser extent, but locally important, freshwater riverine inflows.  相似文献   

14.
Characteristic flow patterns generated by macrozoobenthic structures   总被引:2,自引:2,他引:0  
A laboratory flume channel, equipped with an acoustic Doppler flow sensor and a bottom scanning laser, was used for detailed, non-intrusive flow measurements (at 2 cm s− 1 and 10 cm s− 1) around solitary biogenic structures, combined with high-resolution mapping of the structure shape and position. The structures were replicates of typical macrozoobenthic species commonly found in the Mecklenburg Bight and with a presumed influence on both, the near-bed current regime and sediment transport dynamics: a worm tube, a snail shell, a mussel, a sand mound, a pit, and a cross-stream track furrow. The flow was considerably altered locally by the different protruding structures (worm tube, snail, mussel and mound). They reduced the horizontal approach velocity by 72% to 79% in the wake zone at about 1–2 cm height, and the flow was deflected around the structures with vertical and lateral velocities of up to 10% and 20% of the free-stream velocity respectively in a region adjacent to the structures. The resulting flow separation (at flow Reynolds number of about 4000 and 20,000 respectively) divided an outer deflection region from an inner region with characteristic vortices and the wake region. All protruding structures showed this general pattern, but also produced individual characteristics. Conversely, the depressions (track and pit) only had a weak influence on the local boundary layer flow, combined with a considerable flow reduction within their cavities (between 29% and 53% of the free-stream velocity). A longitudinal vortex formed, below which a stagnant space was found. The average height affected by the structure-related mass flow rate deficit for the two velocities was 1.6 cm and 1.3 cm respectively (80% of height and 64%) for the protruding structures and 0.6 cm and 0.9 cm (90% and 127% of depth) for the depressions. Marine benthic soft-bottom macrozoobenthos species are expected to benefit from the flow modifications they induce, particularly in terms of food particle capture due to altered particle pathways and residence times, but also for the exchange of gases, solutes and spawn. The present results confirm previous studies on flow interaction effects of various biogenic structures, and they add a deeper level of detail for a better understanding of the fine-scale effects.  相似文献   

15.
Dynamics of inorganic nutrient species in the Bohai seawaters   总被引:3,自引:0,他引:3  
Within the frame of a Sino-German Joint Research Program, two cruises of “R/V Dong Fang Hong 2” were carried out in September–October 1998 and April–May 1999, respectively, to understand the dynamics of nutrients in the Bohai. Nutrient species (NO3, NO2, NH4+, PO43− and SiO32−) are determined colorimetrically on board for five anchor and 30 grid stations. In situ incubation experiments are performed to determine planktonic nutrient uptake and benthic exchange flux. Nutrient concentrations display short-term variability and seasonal change in the Bohai, with higher levels in shallow coastal waters than in the Central Bohai. The influence of riverine discharge on nutrient levels can be seen from salinity isopleths, nutrient distribution and species ratios. Near-bottom (nb) waters have similar nutrient concentrations as to the surface waters in the Central Bohai, whereas stratification takes place in the Bohai Strait and North Yellow Sea. In situ incubation experiments provide evidence that the uptake ratio (i.e. N, P) by phytoplankton is proportional to the ratios among nutrient species in ambient waters. Based on the data of this study and previously publications, a preliminary estimate of nutrient budgets via riverine input and atmospheric deposition is established. The results indicate that atmospheric deposition gains importance over rivers in delivering nutrients into the Bohai and sustain the new production, following recent decrease in riverine inflow caused by drought periods in North China and damming practices. A historical review of nutrient data indicates that concentrations of nitrogen increase and phosphorus and silica decrease in the Central Bohai over last 40 years. This potentially has an important influence on the health of ecosystem in Bohai (e.g. food web and community structure), though further study is needed to examine the scenario in more detail.  相似文献   

16.
Sandy sediments in shallow coastal waters of the Baltic Sea are often characterised by large numbers of biogenic structures which are produced by macrozoobenthos species. A series of experiments was devised to quantify how the interaction of such structures with the near-bed flow regime affects the sediment flux. Most experiments were done with simplified replicates of structures generated by typical species commonly found in the Mecklenburg Bight, starting with solitary structures and regularly-spaced arrays in a range of characteristic population densities, followed by a complex benthic macrofauna community, both artificial and alive. A laboratory flume channel, equipped with an acoustic Doppler flow sensor and a topography scanning laser, was used for high-resolution measurements (2 mm horizontal step size and 0.3 mm vertical resolution) of sand erosion (220 µm median grain size, at 20 cm s− 1) and fine particle deposition (8 µm grain size, at 5 cm s− 1). Sediment transport threshold values were measured for each layout. As a rule-of-thumb, both the erosion fluxes and the deposition of suspended matter increased considerably at low population densities (below 2%, expressed as percent of the sediment surface covered, i.e. roughness density RD). Above densities of 4%, erosion almost stopped inside the test arrays, and deposition remained well below the level of unpopulated areas. An attempt to extrapolate these findings to field conditions (using field current velocity data from 2001) showed that the net flux switched from erosion to deposition for densities above 5%. These parameters can now be integrated into a numerical sediment transport model coupling waves, currents, sediment dynamics and biological processes, which is currently under construction at the Baltic Sea Research Institute (IOW), Rostock, Germany.  相似文献   

17.
We develop a layered “box model” to evaluate the major effects of estuarine eutrophication of the Szczecin lagoon which can be compared with integrating measures (chlorophyll a (Chl a), sediment burial, sediment oxygen consumption (SOC), input and output of total nutrient loads) and use it to hindcast the period 1950–1996 (the years when major increase in nutrient discharges by the Oder River took place). The following state variables are used to describe the cycling of the limiting nutrients (nitrogen and phosphorus): phytoplankton (Phy), labile and refractory detritus (DN, DNref, DP, DPref), dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and oxygen (O2). The three layers of the model include two water layers and one sediment layer. Decrease of the carrying capacity with respect to the increased supply of organic matter of the system with advancing eutrophication over the period studied is parameterized by an exponential decrease of the sediment nitrogen fluxes with increasing burial, simulating changing properties from moderate to high accumulating sediments. The seasonal variation as well as the order of magnitude of nutrient concentrations and phytoplankton stocks in the water column remains in agreement with recent observations. Calculated annual mean values of nutrient burial of 193 mmol N m−2 a−1 and 23 mmol P m−2 a−1 are supported by observed values from geological sediment records. Estimated DIN remineralization in the sediments between 100 and 550 mmol N m−2 a−1 corresponds to SOC measurements. Simulated DIP release up to 60 mmol P m−2 a−1 corresponds to recent measurements. The conceptual framework presented here can be used for a sequential box model approach connecting small estuaries like the Szczecin lagoon and the open sea, and might also be connected with river box models.  相似文献   

18.
We report on an intensive campaign in the summer of 2006 to observe turbulent energy dissipation in the vicinity of a tidal mixing front which separates well mixed and seasonally stratified regimes in the western Irish Sea. The rate of turbulent dissipation ε was observed on a section across the front by a combination of vertical profiles with the FLY dissipation profiler and horizontal profiles by shear sensors mounted on an AUV (Autosub). Mean flow conditions and stratification were obtained from a bed mounted ADCP and a vertical chain of thermistors on a mooring. During an Autosub mission of 60 h, the vehicle, moving at a speed of ~ 1.2 m s− 1, completed 10 useable frontal crossings between end points which were allowed to move with the mean flow. The results were combined with parallel measurements of the vertical profile of ε which were made using FLY for periods of up to 13 h at positions along the Autosub track. The two data sets, which show a satisfactory degree of consistency, were combined to elucidate the space–time variation of dissipation in the frontal zone. Using harmonic analysis, the spatial structure of dissipation was separated from the strong time dependent signal at the M4 tidal frequency to yield a picture of the cross-frontal distribution of energy dissipation. A complementary picture of the frontal velocity field was obtained from a moored ADCP and estimates of the mean velocity derived from the thermal wind using the observed density distribution. which indicated the presence of a strong (0.2 m s− 1) jet-like flow in the high gradient region of the front. Under neap tidal conditions, mean dissipation varied across the section by 3 orders of magnitude exceeding 10− 2 W m− 3 near the seabed in the mixed regime and decreasing to 10− 5 W m− 3. in the strongly stratified interior regime. The spatial pattern of dissipation is consistent in general form with the predictions of models of tidal mixing and does not reflect any strong influence by the frontal jet.  相似文献   

19.
An adjoint 1-D model was used to determine vertical diffusivity coefficients from temperature profiles collected within a filament escaping from the Galician coast following an upwelling event. The optimisation scheme ended with relatively high diffusivity values within the thermocline (9×10−5 m2 s−1). Such high values are relevant for biogeochemical exchanges between surface and deep waters in stratified areas.The optimised values were several orders of magnitude higher than the bulk of diffusivity measurements recorded with a free-falling device; however, the optimisation solution was consistent with the arithmetic mean of the measurements in the thermocline (7.7×10−5 m2 s−1), giving more weight to the few largest values. Below the thermocline, the data assimilation method failed because of the three-dimensional nature of the advective field of the upwelling system. Ignoring this advective forcing in the model led to estimates that were two orders of magnitude too high.The results suggest that turbulent mixing is a random process where a few intense events determine the average mixing that drives the long-term evolution of the water column structure. This statistical property is very important when one wants to use instantaneous diffusivity measurements for modelling purposes.  相似文献   

20.
Mean concentrations of the anthropogenic radioactive oceanographic tracers 99Tc, 90Sr and 137Cs have been measured as 0.005, 1.6 and 2.5 Bq m−3 in oceanic Northeast Atlantic surface water, east and northeast of the Azores, in 1992. This is, apparently, the first published value for fallout “background” 99Tc in oceanic Atlantic water.Comparison with older data indicates an observed half life for 90Sr and 137Cs in the northeast Atlantic surface water of 20 yr corresponding to a mean residence time of 80–100 yr for the stable elements.The observed 99Tc/90Sr ratio (3 × 10−3) in the Azores samples is 10 times higher than the theoretical fission yield decay corrected to 1992. This is in agreement with published data on rain water samples and may be characteristic for 1960's global fallout. Furthermore, the measured 137Cs/90Sr ratio is not significantly different from that observed for global fallout. There do not appear to be any additional significant sources of artificial radionuclides in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号