首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
实时、准确的交通流预测是智能交通控制和诱导的关键之一,针对实际中短时交通流数据批量增加的情况,为了提高预测模型准确性、缩短运行时间和模型更新问题,文章提出了一种基于批处理增量学习Lagrange支持向量回归机的短时交通流预测模型。仿真实验表明,与传统的支持向量回归机增量学习算法相比,提高了模型的预测精度,缩短了训练时间。  相似文献   

2.
支持向量机在交通流量实时预测中的应用   总被引:5,自引:3,他引:5  
徐启华  杨瑞 《公路交通科技》2005,22(12):131-134
实时、准确的交通流量预测是正在发展的智能交通系统的关键问题之一,对于交通控制和交通流诱导都有着直接的影响。提出一种基于支持向量机的交通流量实时预测模型,通过采用序贯最小优化算法,能够实现对交通流量的有效预测。应用实例表明,支持向量机具有良好的泛化性能,在输入信号混有10%噪声的情况下,支持向量机的鲁棒性更好,预测的平均误差为4.25%,预测结果优于BP神经网络和动态递归神经网络。  相似文献   

3.
基于改进支持向量机的交通流量预测算法研究   总被引:1,自引:0,他引:1  
城市交通流具有复杂性、时变性和随机性,如何实时准确的预测交通流量是实现智能交通诱导及控制的前提.结合交通流的时间序列特性,提出基于改进支持向量机的交通流预测算法,该算法能够克服神经网络预测的不足,对支持向量机算法在嵌入维数、核函数和参数选择上进行了改进.实验仿真结果表明,该算法具有很好的预测精度和适用性.  相似文献   

4.
针对城市公路客运量预测中存在的非线性、复杂性和不确定性,提出了一种基于最小二乘支持向量机的城市客运量预测模型.结合西安市历年城市客运量数据,编程实现该预测模型,仿真结果表明了该预测模型的有效性.  相似文献   

5.
房靖  高尚 《交通与计算机》2007,25(2):103-105,110
对灰色理论、神经网络和支持向量机的预测模型进行了研究,对灰色理论、神经网络和支持向量机3种预测方法进行了线性组合、神经网络组合和支持向量机的组合预测.以1995~2004年某公路路段的交通事故次数为例,与单一预测方法结果、线性组合预测和神经网络组合预测进行对比,认为支持向量机组合预测方法比较精确.  相似文献   

6.
龚艳冰  陈森发 《公路交通科技》2007,24(2):140-142,154
建立了选址决策的模糊评价矩阵,应用支持向量机方法(SVM)来处理数据,进行物流配送中心的选址决策。支持向量回归机根据所提供的数据,通过学习和训练,找出输入与输出的内在联系,从而求取问题的解,而不是根据经验知识,因而具有自适应功能,能弱化指标权重确定中人为因素的影响。与传统方法相比较,有较好的泛化能力,能较客观地对多个选址方案的优劣进行评价。最后,引用实例说明利用支持向量回归机完成评价工作的全部步骤。  相似文献   

7.
基于非参数回归的短时交通流量预测与事件检测综合算法   总被引:37,自引:2,他引:37  
针对目前短时交通流预测存在的问题 ,提出一种基于非参数回归的短时交通流量预测与事件检测综合算法框架并对框架中的每个步骤进行详细说明。为了进一步提高上述算法的精度与速度 ,对传统的非参数回归算法做了两方面改进 :基于密集度的变 K搜索算法与基于动态聚类和散列函数的历史数据组织方式。通过这些改进 ,使得上述基于非参数回归的算法成为一种“无参数”、可移植、高预测精度的实时预测算法 ,并能有效地用于短时交通流的预测问题中。现场实验充分表明该算法完全满足实时交通流预测的需要。  相似文献   

8.
针对再生混凝土抗压强度预测问题,提出了一种基于遗传算法优化支持向量机(GA-SVM)的抗压强度预测模型。利用遗传算法对SVM的参数进行优化,并得到优化的SVM预测模型。仿真试验结果表明:与BP神经网络和传统SVM的预测结果相比,基于遗传算法优化支持向量机模型的预测精度更高。  相似文献   

9.
基于支持向量机的车牌字符识别   总被引:1,自引:0,他引:1  
支持向量机(Support Vector Machines,简称SVM)能够有效地解决小样本学习、非线性及高维模式识别等问题。对此提出了在无特征提取情况下基于SVM的车牌字符识别方法,通过实验选定二次多项式作为核函数,并将基于SVM的车牌字符识别与基于BP神经网络的车牌字符识别进行了实验对比。结果表明,在训练样本较少的情况下,该系统具有较高的识别率和识别速度,并具有很好的分类推广能力。  相似文献   

10.
基于支持向量机的高速公路意外事件检测模型   总被引:4,自引:2,他引:4  
陈斌 《中国公路学报》2006,19(6):107-112
为建立快速高效的高速公路意外事件自动检测系统,提高意外事件救援效率,就高速公路意外事件检测中的关键技术进行了研究。在剖析现有模型特征的基础上,引入支持向量机理论,建立了基于支持向量机的高速公路意外事件检测模型。利用自主开发的EAD-Simulations系统所建立的数据库,对模型进行了仿真试验,分析了不同核函数对检测性能的影响,研究了单侧输入与双侧输入、不同输入特征因素组合的性能指标。结果表明:与California 8#算法相比,该模型检测率提高了179%,误检率降低至0.50%,平均检测时间缩短了81%;同时得到了上游占有率与流率组合的最优输入特征。  相似文献   

11.
传统的交通流预测技术使用静态和离线算法,无法对模型的参数值和内部结构进行在线调整.然而,交通流变化具有明显的动态性,其内在模式会随时间发生变化,导致构建好的模型准确度下降.针对上述问题,提出了基于数据流集成回归的短时交通流预测模型.将不断产生的交通流数据划分成数据块,每个数据块训练1个基础回归模型,然后加权组合为集成模型.通过不断训练新的基础模型,并置换出集成模型中准确度最差的基础模型,实现在线更新.在实测数据上的对比实验结果表明,与静态离线的BN模型相比,模型的均方根误差降低了19.5%,运算时间降低了48.7%,并能够快速适应交通状况发生明显变化的情况,适用于城市主干道路的短时交通流预测问题.   相似文献   

12.
为了提高短时交通流的预测精度,更加精确地进行交通流规划和管理,引入了一种基于相似性的短时交通流预测方法。用该方法研究了美国加州高速公路某单点交通流在时间尺度上的相似性,发现同星期几交通流的相似性比相邻几天交通流的相似性大。在此基础上,建立了小波神经网络模型,将4个同星期几的交通流数据和相邻4天的交通流数据分别构成一组,各自采用200多组数据分别训练小波神经网络,然后对同一天的交通流进行了预测,发现前者的MRE、MSPE值比后者低,EC值比后者高,说明前者的预测精度高于后者,验证了所提方法的有效性。  相似文献   

13.
为了提高城市道路短时交通流预测的精度,提出了一种基于时空遗传粒子群支持向量机的短时交通流预测模型.通过主成分分析法对路网原始交通流量进行时空相关性分析,用较少的主成分代替原始交通流量并作为预测因子,在粒子群算法中引入遗传算法的交叉和变异因子,避免粒子群算法陷入局部最优.利用改进后的粒子群算法优化支持向量机参数,得到最优的支持向量机模型,并实现城市道路的短时交通流预测.以长春市路网的实测数据为基础进行了实例验证,结果表明,优化支持向量机参数时,遗传粒子群算法不会陷入局部最优,优化效果更好;与粒子群支持向量机模型和遗传粒子群支持向量机模型相比,所提出预测模型的相对误差波动较稳定,平均预测精度分别提高了4.96%和3.41%.  相似文献   

14.
李素兰 《交通与计算机》2011,29(4):84-86,98
准确有效地预测短时交通量是实施交通诱导及控制的前提与关键。投影寻踪方法能从不符合正态分布的或没有多少先验信息的数据本身中找出其结构或特征,并能在线性投影中解决非线性结构的问题。文中将投影寻踪回归算法理论应用于短时交通量预测领域,采用正交Hermite多项式拟合岭函数,并用C++语言设计出相应模型的实现算法,对短时交通量实施滚动预测。利用某快速路实际观测数据进行预测实验,实验结果证实该方法具有可行性、可靠性,有一定的实用价值。  相似文献   

15.
短期交通流量预测是智能交通系统的核心研究内容之一.针对城市交通流具有的混沌特性,提出1种具有较高精度的短期交通流量多步预测方法,以支持交通控制和交通流诱导.利用最大Lyapunov指数方法判别交通流量时间序列的混沌特性,对交通流量时间序列进行相空间重构,并在此基础上结合加权一阶局域方法设计了基于混沌理论的交通流量多步预测算法.将此方法运用于实际道路交通流量的多步预测,比较多步预测值与实际流量值,其平均绝对百分比误差为3.33%,平均绝对误差为9.05/[pcu· (5min)-1],均方根误差为10.36/[pcu·(5 min)-1].应用结果表明,该预测方法具有较高的精度.  相似文献   

16.
空中交通流量短时预测是空中交通管理的基础,是有效缓解交通拥堵问题的前提。为提高空中交通流量短时预测的精度,减小空中交通管制员的工作压力,提出了基于小波优化GRU-ARMA的空中交通流量短时预测方法。在传统预测方法的基础上,通过小波变换对原始流量数据进行多尺度分解,提取不同频率交通流量的细节特征,对原始流量数据进行预处理。同时,根据小波变换,在低频处将频率细分作为趋势项,高频处将时间细分作为噪声项。其中,趋势项反映了空中交通流量随时间演化的整体趋势性,噪声项反映了随机因素对空中交通流量的综合影响。使用门控循环单元(GRU)神经网络模型预测趋势项,自回归滑动平均模型(ARMA)模型预测噪声项;将趋势项和噪声项的预测值叠加,得到最终的短时流量预测值。误差分析表明,该方法在每个预测点上的误差保持在2%左右,预测效果稳定;而直接采用原始流量数据进行预测的GRU、BiLSTM、CNN-LSTM神经网络模型及单一的ARMA模型,每个点的预测误差在5%~37.14%之间。与GRU、BiLSTM、CNN-LSTM神经网络模型相比,该模型的预测精度分别提高了3.02%,5.39%,5.05%。  相似文献   

17.
针对仅利用欧氏距离不能准确反映相空间中相点间的相似性大小,提出一种改进预测模型,该模型同时考虑相点间的欧氏距离和相似性来选取邻近点。在对交通流量时间序列进行相空间重构后,运用最小二乘支持向量机分别对不同方法得到的邻近点进行训练,并对未来时段的交通流量进行了多步预测。实际案例的预测结果表明,改进方法比一般方法具有更好的适应能力和预测精度。  相似文献   

18.
罗中萍  宁丹 《交通科技》2020,(1):97-101
为提高短时交通流预测的精度,提出利用BP神经网络、RBF神经网络和ARIMA模型构建组合预测模型,该组合预测模型利用最优化原理进行权系数的分配,并且满足分配到的权值始终具有实际意义。通过对分配的权系数进行显著性检验,以确保组合预测模型中选用的单项预测方法显著相关。通过实例分析,验证了组合预测模型的有效性,结果表明,相比较单一的预测模型,组合预测模型具有更高的预测精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号