共查询到8条相似文献,搜索用时 15 毫秒
1.
在小半径曲线上采用新研制的Ⅱ型轨撑,有利于提高钢轨的稳定性,保持钢轨轨距,减少钢轨横向变形和不均匀磨耗,并可取消原采用的易折损的轨距杆,从而大大提高小半径曲线轨道强度。 相似文献
2.
为控制小半径曲线动态轨距扩大,一般采用轨撑和轨距拉杆对轨道进行加强,但大机捣固道床时需拆除轨距拉杆,增加了养护维修工作量。为提升小半径曲线大机养护的便利性,研究小半径曲线拆除轨距拉杆只采用轨撑的可行性。建立轨撑和轨距拉杆加强的小半径曲线横向受力计算模型,分析轨撑、轨距拉杆以及两者组合使用对小半径曲线动态轨距保持能力的影响。研究表明:仅采用弹性轨撑即可有效保持小半径曲线动态轨距的稳定,建议在曲线半径R<350 m,每隔1根轨枕安装1对轨撑;350 m≤R<450 m,每隔2根轨枕上安装1对轨撑;450 m≤R<600 m,每隔3根轨枕上安装1对轨撑;R≥600 m和直线根据线路状态可适当安装。 相似文献
3.
4.
论述延长朔黄铁路小半径曲线钢轨使用寿命采取的综合技术措施,开展曲线钢轨非对称型面打磨、曲线钢轨润滑、采用优质钢轨、轨道结构优化等研究与试验。阐述试验段设置原则和轨道结构配置等,并在朔黄铁路设置试验段,验证重载铁路小半径曲线钢轨减磨综合技术措施。通过分析试验段与对比段的减磨效果,以及与既有磨耗数据对比,钢轨减磨综合技术措施效果明显,并建议对打磨型面进行优化。 相似文献
5.
田常海 《铁道标准设计通讯》2019,(8):1-5
通过持续调研大秦重载铁路75 kg/m钢轨使用和重伤情况,进行钢轨重伤类型和每千米重伤量统计分析,获得钢轨主要重伤类型、不同地段一定累计通过总重对应的每千米钢轨重伤量;针对不同长度地段钢轨重伤量数据,提出钢轨重伤加权统计方法,利用回归分析方法和不同地段钢轨重伤量数据,获得大秦重载铁路75 kg/m钢轨整亿吨通过总重下加权重伤量数据;利用大秦重载铁路各种钢轨维修费用数据进行经济分析,获得钢轨经济下道周期;通过2006年和2016年钢轨重伤统计数据对比分析,结合我国运输特点及经济分析结果,提出累计通过总重与每千米钢轨重伤量相结合的大修换轨周期,并估算了延长换轨周期的经济效益。 相似文献
6.
为比选出适用于朔黄重载铁路的曲线钢轨润滑剂,确定曲线钢轨润滑周期,进行了室内试验和现场验证试验。室内试验采用MM-200磨损试验机模拟重载铁路轮轨接触,分800,1 500,2 000 N共3种荷载工况,分别对4种润滑剂进行了摩擦性能试验。试验结果表明,济南三新干式润滑剂在1 500 N和2 000 N荷载下减磨效果明显。针对比选出的两种润滑剂,在R600 m曲线进行了现场对比试验,通过总重达到224 MGt时,济南三新干式润滑剂的减磨效果明显,其平均侧磨量减少54.4%。朔黄铁路在目前运输条件下,济南三新干式润滑剂的润滑周期应控制在12 h以内,即每天涂敷2次。 相似文献
7.
随着机车轴重的不断增加,轮轨磨耗加剧,重载铁路小半径曲线上的钢轨波磨越发普遍。文章基于车辆系统动力学理论,建立C_0-C_0型30 t轴重重载机车模型,利用MATLAB软件模拟小半径曲线上的钢轨波磨作为外部激扰输入,研究了小半径曲线钢轨波磨对机车曲线通过安全性的影响。结果表明,轮轨垂向力随着波磨波深的增大而增大,随着波长的增大而减小,当机车以不低于70 km/h的速度通过小半径曲线钢轨波磨区间时,极有可能出现轮轨瞬时脱离现象。为了保障机车曲线安全通过,以动态轮重减载率、脱轨系数和倾覆系数为评价指标,针对小半径曲线上不同波深和波长的钢轨波磨,给出了行车速度建议:对于波长为300 mm、波深为0.8 mm的钢轨波磨区间,机车安全通过速度不能超过70 km/h;当波磨进一步发展,波深达到1.0 mm时,机车安全通过速度不能超过60 km/h。 相似文献
8.
对不同行车速度、不同列车载重条件下地铁小半径曲线地段钢弹簧浮置板轨道振动特性进行现场测试,并与相似条件下铺设压缩型减振扣件整体道床轨道地段的测试结果进行对比,研究小半径曲线地段钢弹簧浮置板轨道的减振特性。结果表明:对于小半径曲线地段,钢弹簧浮置板轨道的减振效果在运行速度不大于40 km/h的低速列车通过工况下普遍优于运行速度大于40 km/h的列车通过工况,但小半径曲线地段的振动控制不应一味地降低车速,在某些车速范围内降低车速反而会加剧振动源强;相对于压缩型减振扣件整体道床轨道,钢弹簧浮置板轨道隧道壁最大Z振级的插入损失达9.5~15.4 dB,隧道壁分频振级插入损失的最大值达19.7~27.4 dB,具有更好的减振性能;相较于非高峰时段,高峰时段地铁满载的增重可使浮置板轨道垂向位移增大约10%。 相似文献