首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
城市道路交通流预测的可靠性、实时性是城市交通管理与控制的基础. 为提高城市道路交通流的预测能力,提出了可变元胞传输模型(VCTM模型). 在分析元胞传输模型(CTM模型)在城市道路交通流预测方面应用不足的基础上,根据流量守恒定律,将元胞的交通流密度和元胞的长度两个参数引入CTM模型,建立了VCTM模型. VCTM模型根据路段连接、汇聚、分流等三种形式的不同特点,分别建立了元胞连接、汇聚、分流的交通流传输公式. 虽然VCTM模型引入了元胞的交通流密度和元胞的长度两个参数,增加了模型求解的运算量,但克服了元胞长度必须相等的局限性,确保VCTM模型可以应用于城市路网中的不同道路. 仿真结果表明,VCTM模型能够满足城市道路交通流预测的要求.  相似文献   

2.
袁健  范炳全 《城市交通》2012,10(6):73-79
交通短时流预测是交通控制和交通诱导的基础和关键技术之一,经过几十年的研究已出现200多种预测方法。首先对城市道路交通流短时预测方法进行分类。然后分析、归纳了交通流预测领域的最新研究进展,总结出几类最新的研究趋势:综合模型应用,组合模型应用,时空相关性研究,单断面向多断面、路网扩展研究,单步预测向多步预测发展研究,以及基于反馈的动态预测。最后,展望了今后交通流短时预测的研究方向。  相似文献   

3.
针对现阶段城市道路交通短时交通流预测精度不高的局限性,将小波变换引入到城市道路交通预测过程中,提出一种基于小波神经网络的预测方法。运用美国加州高速公路通行能力度量系统数据作为数据来源,应用小波变换和BP神经网络相结合对其进行预测,然后对预测结果数据进行分析,并对短时交通流进行综合评价。实验表明,该方法与传统的BP神经网络相比较,在短时交通流预测方面具有较好的有效性和优越性。  相似文献   

4.
交通分布数据获取难度大、成本高,是制约交通工程师开展交通预测的主要因素. 为提高效率、降低工程实践中的预测成本,对城市路网OD矩阵可预测性展开研究. 描述3 种交通分布推算模型并以广州为例,给出交通流概率分布及发生量概率分布. 通过回归分析及残差分析探究发生量与人口、经济的关系,提出考虑人口效益的靶向双联模型(称为TDM模型). 根据误差分析验证4 种模型准确度,并将模型应用于深圳市. 结果表明:交通流及发生量概率分布具有高度异质性,遵循Zipf 定律;发生量与人口、经济相关性强,拟合优度为0.87; TDM模型精度略低于重力模型,但高于其他两种模型,且在深圳市推算效果良好. 综合预测精度、成本和效率,TDM模型更适合预测城市道路交通分布.  相似文献   

5.
城市道路交通流仿真系统研究   总被引:1,自引:0,他引:1  
针对交通流仿真的热点,构建城市道路微观交通仿真模型框架,阐述模型的建模方法.在此基础上,运用面向对象思想和技术、动态内存管理和实时视景仿真技术开发了城市道路微观交通流仿真原型系统.介绍了该原型系统软件的体系结构及关键技术.通过仿真应用表明,开发的原型系统仿真效果良好.  相似文献   

6.
针对基本通行能力不能全面反映道路交通状况的缺点, 提出了城市道路随机化通行能力概念; 依据评价体系定义交通中断与持续中断, 量化了城市道路交通拥堵程度; 研究了现有通行能力估计方法, 利用乘积限与寿命分布列构造并估计了交通流分布函数; 结合交叉口各入口交通流数据特性改进传统连续交通流参数模型, 提出了基于交通流生存函数的交叉口通行能力计算模型; 将该模型估计结果与道路通行能力手册HCM2010中的模型估计结果和交叉口实测流量进行误差对比。分析结果表明: 生存函数模型计算出的中断、持续中断交叉口通行能力与HCM2010中的模型计算结果误差均值分别为0.162 1与0.116 4, 方差分别为0.029 0与0.015 2, 两者误差波动均较小; 提出的计算模型结果与实测较大流量相对误差分别为9.720%、3.822%和4.936%、4.779%, 统计意义下提出的计算模型相对误差为5.871%, 估计效果稳健; 城市道路交通中断次数、可接受中断概率、交通流、速度与道路通行能力之间存在生存函数乘积限对应关系, 研究交叉口的通行能力为7 632 pcu·h-1, 提出的计算模型估计结果更具有可靠性。可见, 提出的计算模型适用性较好, 特别在不同拥堵程度的城市道路交通区域, 通过可接受中断概率估计通行能力, 可为城市道路交通组织与管理部门提供优化目标、科学决策和易于接受的理论依据。   相似文献   

7.
一种路网交通流参数的融合预测方法   总被引:1,自引:0,他引:1  
提出了数据驱动与中观交通仿真融合的交通流预测框架.该框架将数据驱动 方法在路网局部断面和路段的高精度预测能力与中观交通仿真的路网范围预测能力结 合起来,通过可信度高的路网局部断面和路段预测值,在线修正中观交通仿真模型的参 数,使得中观交通仿真模型能够逼近、反映交通流运动趋势,提高路网范围交通状态预测 精度.通过结合路段旅行时间预测与中观交通仿真的实例分析证明,断面和路段预测和中 观交通仿真结合发挥了两者各自的优势,预测结果优于单一的中观交通仿真方法.  相似文献   

8.
为了捕捉交通流随机波动导致的交通流短时预测的不确定性,利用反映预测波动的异方差对可靠性进行量化预测;基于时间序列及其异方差理论,构建了以单整自回归滑动平均ARIMA(0,1,1)模型为均值方程的城市道路交通流短时预测的广义自回归条件异方差GARCH(1,1)模型. 通过ARCH LM检验证实,GARCH(1,1)模型能够有效捕捉并消除ARIMA(0,1,1)模型的异方差性.结果表明:基于GARCH(1,1)模型的城市快速路流量预测的MAPE值不高于10%,城市快速路及主干道速度预测的MAPE值为7.86%~10.24%;与ARIMA(0,1,1)模型预测的固定置信区间相比,在自由流交通状况下,GARCH(1,1)模型在有效预测前提下的预测置信区间更窄;在交通拥挤状况下,GARCH(1,1)模型能够通过放大预测置信区间宽度减少无效预测.   相似文献   

9.
城市道路交通事故影响已有研究成果主要针对交通事故影响范围和持续时间,且研究方法为基于流体力学的交通流理论。该理论假设交通流处于密闭空间,而城市道路网络出入口、节点甚多,假设与实际情况不符。城市道路交通事故对交通的影响效果与涟漪现象一致,因此采用水波原理定量分析城市道路交通事故对交通的影响程度。首先将城市交通事故对交通的影响与水面受到干扰的涟漪现象进行对比分析。在此基础上,提出交通影响系数概念,利用调研所得车速数据绘制交通影响系数特征曲线;利用SPSS软件,借助水波波动方程,构建交通影响系数随时间的关系模型。结果表明,模型拟合度较好,具有统计学意义。  相似文献   

10.
目前城市道路交通流预测主要是基于物理模型、数理统计特性并融合部分智能预测算法来实现的,而对于一些影响预测效果的重要交通因素,诸如FIFO原则、交通信号控制方案等在现有的预测方法因无法很好地引入和描述而忽略.本文提出了一种基于Optima系统实现的实时在线交通预测方法,通过建立路网模型、需求模型及初始OD矩阵获取路网实时状况,并通过构建关联数据库实现实时路网模型信息、交通信号控制信息的有效对接,依据TRE算法预测路段进出口的累积流量并结合模型分配值、历史数据实现实时在线交通预测.以北京市望京区域为例进行仿真验证,通过误差分析,获得了较为理想的预测效果,验证了该预测方案的有效性.  相似文献   

11.
基于南京市实测数据分析了道路交通流实际随机、时变特征,证实现有行程时间最短路径算法相关研究中对道路交通流的随机、时变特征的假设与实际不符.以反例论证道路交通流实际随机、时变特征下,自适应算法(Adaptive Routing Policy)在求解行程时间最短路径方面的无效性.针对交通模式时段内道路交通流随机、时间无关的特征,以及路段行程过程中行程时间的确切概率分布难以知晓的实际情况,提出基于历史概率分布的历史期望行程时间最短k路径基础上的考虑风险衡量及当前道路实际交通流状况的路径选择算法.  相似文献   

12.
通过对冰雪条件下交通流的饱和流率、平均车头时距和平均行程车速等交通参数的调查,分析了冰雪条件对路段交通流特性的定量影响,在此基础上,采用综合分析法,选取平均行程速度和饱和度等指标,建立了冰雪条件下路段交通拥堵状态识别模型。并结合正常条件下的交通参数拥堵阈值和冰雪对交通流的定量影响,给出了确定冰雪条件下各状态指标的拥堵阈值的方法。最后利用哈尔滨市红旗大街实际调查数据对该模型进行了验证。  相似文献   

13.
研究了城市道路服务水平评价与预测所需参数的实时处理算法和采集方式.利用城区道路上的公交车为数据动态采集单元,智能采集公交车实时运行状态数据信息,计算公交车车头时距、分析车流速度,对滤波调整预测速度与实际速度进行对比分析,建立以行车速度、行程时间、拥挤程度为评价指标的城市道路四级服务水平实时评价与预测系统.该系统能为公交车运行及其交通出行者提供管理、信息服务,适时引导交通流量合理分布,高效地利用道路网络,减少城市交通拥堵,提高交通运输效率,为城市交通规划提供依据,对推动城市畅通工程及城市交通智能化的发展,有一定参考作用.  相似文献   

14.
To estimate arterial link traffic condition based on probe vehicles, it is necessary to investigate the fluctuation characteristics of road travel time with traffic condition. On the basis of micro traffic simulation model, this paper analyzes the fluctuation of road travel time with traffic condition, and examines whether the mean travel time can reflect the variation of traffic conditions including free flow, congestion to traffic jam. As a conclusion, (1) mean link travel time can be used to identify free flow, congestion, and traffic jam; (2) mean link travel time divides congestion condition, but cannot subdivide free flow condition; (3) in the condition of congestion, travel time is distributed as a two-peak mode, and the average travel time is difficult to be estimated by small size sample.  相似文献   

15.
了解路段旅行时间随交通状况变化特性对利用探测车等新式交通检测技术估计交通状态非常重要.基于交通微观仿真模型,分析了路段旅行时间随交通状况的变化特性,验证了平均路段旅行时间是否能够采集通畅、拥挤到堵塞这三个状态,以及是否能细分这三个交通状态.结果表明:(1)平均路段旅行时间能够判断上述三个状态;(2)在拥挤阶段,随着交通状态恶化,平均路段旅行时间逐步增加,因此能够细分拥挤状态为多个子状态,但由于在通畅阶段,即便流量增加,平均路段旅行时间基本不变,因此无法细分通畅状态,细分通畅状态需要流量信息;(3)路段旅行时间在拥挤状态时处于双峰分布,难以用少量的探测车提供的数据可靠地估计平均路段旅行时间.  相似文献   

16.
运用随机用户平衡配流的基本思想和交通流理论,提出了道路交通状态的概念,以便讨论交通拥挤情况下的交通量分配问题.将道路交通状态定义为行程时间和道路拥挤度的线性加权和.假定在路网随机变化的情况下,出行者以行程时间和道路拥挤度最低为路径选择准则,建立了基于道路交通状态的随机用户平衡配流模型,并证明了模型的等价性和唯一性,给出了该模型的连续平均求解算法.一个小型网络的数值计算结果表明,该模型能反映出行者在随机路网中的路径选择行为.  相似文献   

17.
基于行程时间对交通需求的影响,建立路段交通流模型,对路段交通流量稳定性及通行能力的退化状态进行分析.在出行者的交通需求具有弹性的情况下,路段行程时间越长,交通需求越低.模型中行程时间由道路上的交通状态决定,车辆行驶过程的计算利用MITSIM模型,通过数值模拟方法分析弹性需求对交通流的稳定性及通行能力的影响.仿真结果表明,在交通需求和路段性能相互作用下,路段交通流量趋向于稳定,非饱和状态下的稳定流量随着交通压力的增加逐渐上升到最大通行能力,而饱和状态下的稳定流量小于最大通行能力且交通压力越高通行能力退化越严重.因此在城市路网规划时,应综合考虑路网中各路段通行能力,避免路段通行能力下降.  相似文献   

18.
以道路子网为研究对象,采用Elman神经网络实现道路网多断面交通流短时预测. 首先通过提取交通流空间特性对道路网进行划分,降低道路网整体分析复杂度及解空间维数,提高交通流预测的计算精度和效率;其次以实时采集的交通流数据为基础,并以重构的交通流时间序列作为输入,采用Elman神经网络实现道路网多断面交通流同时预测;最后,基于城市快速路多断面交通流量数据对短时交通流预测方法进行验证,并与BP神经网络预测结果进行对比分析. 验证结果表明,本文提出的道路网划分方法能够划分出满足预测需求的子路网,在划分的子路网上,应用Elman神经网络能够实现道路网多断面同时预测,且预测效果优于BP神经网络.  相似文献   

19.
行程时间可靠性可以直观反映道路交通流的运行状况,为管理者和出行者提供决策依据。本文以车牌识别系统数据为行程时间数据来源,每10 min作为一个出发时段,研究行程时间可靠性在全天的分布情况。提出了从运行效率和运行稳定性两个层面定义行程时间可靠性的内涵,并通过相关性分析,将现有常用行程时间可靠性指标分成了两类。提出了基于行程时间的交通拥挤判别方法,依照拥挤情况对交通流运行状态进行了分类,分析了行程时间可靠性随交通流运行状态的变化趋势:从效率层面讲,行程时间可靠性与交通拥挤情况的变化趋势完全一致;从稳定性层面讲,稳定交通拥挤时段行程时间可靠性较高,而交通流转变时段行程时间可靠性较差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号