共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
以上海轨道交通七号线下穿明珠线盾构施工为依托,通过采用摩尔一库伦弹塑性屈服准则,建立二维有限元数值模型,研究上海轨道交通七号线盾构隧道开挖对邻近桩基的影响。数值模拟结果表明:当盾构土仓压力控制在0.28~0.34MPa,同步注浆压力控制在0.26~0.32MPa的情况下,盾构推进能保证桩基的安全。 相似文献
3.
盾构隧道抗震减震措施主要有两个总体思路,即:改变衬砌一定范围内围岩的性能和改变结构本身的性能。改变衬砌结构本身性能方便有多种方式,比如:增加衬砌厚度,改变管片环向或纵向接头方式、改变衬砌刚度等。通过数值分析比较不同的衬砌刚度对盾构隧道抗震性能的分析。得出单纯提高管片的刚度并不能提高盾构隧道的抗震性能,反而增加衬砌管片的受力。 相似文献
4.
5.
6.
衬砌劣化对水下盾构隧道变形的影响分析 总被引:1,自引:0,他引:1
针对目前世界最大直径水下盾构隧道的工程背景和劣化环境,通过分析衬砌劣化机理和行业规范标准确定了以有效厚度考量衬砌结构劣化,采用强度折减原理对强度参数进行逐步地折减,建立了考虑地层土性和覆土厚度影响的水下盾构隧道衬砌劣化模型,运用数值计算方法分析了衬砌劣化的多种组合工况,从而对衬砌劣化引起上海长江隧道(崇明越江通道)变形的特征表现和趋势规律进行了研究和探讨。研究结果表明:基于有效厚度折减的衬砌劣化分析方法能够有效地反映劣化后隧道结构的整体变形状况,且计算结果可靠合理,可为盾构隧道健康状态诊断与分析提供理论依据和技术支持,也可为运营管理部门正确及时的养护维修提供借鉴和指导。 相似文献
7.
8.
盾构隧道内部双层结构快速化施工方法技术研究 总被引:8,自引:0,他引:8
随着盾构隧道直径的增加,双层车道结构在大直径盾构隧道设计中得到了广泛的应用.传统盾构隧道内部结构设计采用现浇混凝土结构.由于空间狭小,施工组织困难,施工速度慢.通过对现有隧道快速化施工方法的研究,提出了采用预制化结构设计加快盾构隧道内部结构施工速度的设计技术.结合南京市纬三路过江通道工程盾构隧道双层行车道结构设计,通过对上层车道结构预制化方法的研究,首次提出“预制车道板+梁板节点后浇”和“预制车道板+支座”两类上层行车道预制结构方案,并对预制车道板预制宽度、拼接做法等设计要素进行了对比分析.施工分析表明预制结构速度在施工速度、施工组织灵活性等方面均优于现浇结构施工. 相似文献
9.
北京地铁8号线永定门外站一木樨园北站区间隧道埋深较深、受地下水影响严重、周围环境复杂,对施工提出了较高要求。为保证施工顺利进行,对明挖法、暗挖法及盾构法3种施工方法进行比选,确定了加泥式土压平衡盾构机的施工方案,拟定了隧道净空尺寸、对管片结构进行设计及优化。采用MIADS/GTS数值模拟软件对盾构法施工造成的地表及过街通道变形进行验证,计算结果显示地表最大沉降为14.4mm,过街通道最大沉降为5.5mm,满足控制要求。研究结果可为类似工程提供借鉴及参考。 相似文献
10.
11.
施工期盾构隧道的上浮问题随着盾构隧道的大量修建而引起了广泛关注。基于盾构隧道施工中的上浮问题,系统分析了隧道上浮原因,将其归纳为上浮力作用、轴向偏心荷载作用、切口水压影响、地基回弹作用、上覆土的反向压缩效应以及砂土液化等6个方面;重点分析了因上浮力引起的隧道上浮的抗浮计算模式:从横向和纵向角度提出了局部及纵向总体2种抗浮计算模式。在局部抗浮计算模式中,依据上浮力的特性和作用范围,分为单一管片错动分析模式和整环管片错动分析模式;在纵向总体抗浮计算模式中,讨论了纵向沉降与上浮的异同,进而说明了二者的相通性;并分析了2种抗浮计算模式的适应性。 相似文献
12.
为得到能真实反应软土地基大直径盾构隧道结构受力特点又能保证衬砌结构安全的设计模型,结合广州轨道交通4号线南延段大直径地铁盾构隧道结构现场实测结果,采用ANSYS软件研究适用于软土地基大直径盾构隧道衬砌结构设计的计算模型。基于反分析得到的设计模型,对水平侧压力系数、地基弹簧刚度、管片厚度、管片接头位置、管片分块数量等影响大直径盾构隧道衬砌结构受力特性的因素进行敏感性分析。结果表明: 1)采用地基弹簧模拟底部反力并通过调整弹簧的范围可得到既能真实反映衬砌结构受力特性又能保证结构安全性的计算模型; 2)衬砌结构受力对侧压力系数和管片厚度敏感,对地基刚度不敏感; 3)接头位置变化和管片分块数量主要影响布置地基弹簧范围内的管片受力。 相似文献
13.
为探究小半径曲线盾构隧道施工过程中施工荷载对管片防水性能的影响,依托深圳国际会展中心配套市政项目盾构段,选取油缸推力和螺栓预紧力作为主要施工荷载,采用ANSYS建立管片结构模型和弹性密封垫模型,对施工荷载下管片的张开量以及相应张开量下的管片防水性能进行研究,得到施工荷载对管片防水性能的影响。研究结果表明: 1)油缸推力对环缝影响较大,会加大环缝张开量,但对纵缝影响较小; 2)管片间弹性密封垫的防水性能随管片张开量的增加先增大后减小,在张开量为2 mm以及大于6 mm时存在渗水风险; 3)以张开量2 mm为计算控制标准,油缸推力使直线段管片防水性能下降8%,曲线段下降15%; 4)增大螺栓预紧力能略微提高直线段管片的防水性能,但对曲线段管片的防水性能无影响,曲线段整体防水性能较差。 相似文献
14.
谢卓雄 《广东公路勘察设计》2007,(4):16-18
本文论述了盾构隧道的经典计算模型,针对其不足设计了新的计算模型——壳-弹簧模型。与目前普遍使用的梁-弹簧模型进行计算比较,发现壳-弹簧模型能较好地反映结构的三维受力情况,梁-弹簧模型计算结果可能偏于保守,弯矩极值有10%的偏差可能,但不同结构形式和不同荷载情况下,结果相差情况可能并不一样。新模型可为工程设计者提供参考。 相似文献
15.
16.
以成都某轨道交通工程盾构下穿既有公安局工程为背景,提出洞内深孔注浆和地层注浆加固的控制措施,通过数值模拟方法建立三维地层结构模型,模拟盾构全开挖过程,探明盾构近接穿越过程中地层以及建筑物的受力特性。结果表明,地层沉降在开挖过程中持续增长,增长速率在掘进至建筑物下方时最大;在开挖下穿段,管片变形变化显著;“工”字形建筑物两端沉降相对更大且在靠近线路处沉降达到最大,建筑物倾斜变形在掘进至正下方时最为明显。结合施工监测数据,在掘进过程中应及时根据监测数据调整盾构参数,保证建筑物沉降量与变形速率均满足施工监测要求。 相似文献
17.
为研究盾构隧道下穿临近铁路桥梁过程中隧道埋深对既有桥梁沉降变形及水平位移变化的影响,以武汉地铁3号线区间盾构穿越铁路桥梁工程为依托,利用有限元软件ANSYS对不同隧道埋深(2D、2.5D、3D(D为隧道直径))下桥梁的梁体结构、轨道线路及桩基位移等进行对比分析,并结合现场数据进行验证。研究结果表明: 1)随着隧道埋深的增大会引起桩基、梁体及钢轨等结构竖向位移的增大,当隧道埋深为18 m时,墩台最大沉降超过了限制值; 2)隧道埋深分别为12、15、18 m时,桥梁墩台及梁体结构均表现出以沉降为主的变形,而水平位移变化幅度较小; 3)在满足地表沉降限值的条件下可适当减少隧道埋深,以控制隧道开挖引起的上部桥梁、钢轨等结构物变形。 相似文献
18.
采用梁-地层弹簧模型,进行了在铁路列车荷载作用下盾构隧道纵向力学行为有限元分析。结果表明:当等效的管片环数较多时,环数的变化对其纵向刚度的影响很小,两侧计算边界取1倍上部荷载作用长度;当盾构隧道的埋深大于2倍隧道外径时,纵向内力和变形很小,满足强度和刚度要求,其纵向设计不需特殊考虑;随着埋深的增加,列车荷载所产生的管片纵向附加内力和变形减小。 相似文献
19.
地铁建设是解决城市交通拥堵问题的有效途径。但是,如果施工措施不当,可能会导致地面沉陷、基坑垮塌、隧道破坏、周边建筑物损害、地下管线损害等事故。该文针对这一问题,参考相关文献,将结构、土体和地铁盾构施工综合进行分析,探讨了多种施工因素对邻近建筑物或构筑物的影响,以确保在隧道盾构正常施工的同时,尽量减小施工对邻近建筑物或构筑物的不利影响。为了分析城市地铁隧道盾构施工对邻近建筑的影响,立足郑州市实际情况,采用数值仿真分析软件FLAC3D,对盾构施工对邻近建筑的影响进行了数值模拟,讨论了隧道与建筑物间距对地表最大沉降及基础差异沉降的影响。 相似文献
20.
以双线盾构隧道下穿既有市政隧道施工为研究对象,在有效模拟盾构施工顶推力和脱环瞬间应力释放的基础上,考虑土体、既有结构、盾构机体、新建结构多体的相互作用,研究了单线和双线贯通对地层变形、既有隧道内力和变形、围护桩变位以及盾构隧道自身内力的分布特征。研究表明:盾构下穿时,既有矩形市政隧道水平向附加拉应力主要出现在隧道底板,竖向最大附加拉压应力出现在两管盾构隧道中心上方隧道边墙底部位置;在盾构隧道正常施工条件下既有隧道是安全的。 相似文献