首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
涡轮增压器轴向力稳态数值模拟及优化   总被引:1,自引:0,他引:1  
采用Numeca数值分析软件建立了某增压器涡轮机及压气机端流场网格模型,并计算出发动机不同转速下涡轮增压器的涡轮端及压气机端的稳态轴向力分布,分析得出由涡轮端指向压气机端方向的轴向力值较大,而由压气机端指向涡轮端方向的轴向力值较小。对压气机叶轮流场进行了分析,发现压气机叶轮背部间隙内的静压分布与轴向力大小紧密相关;研究了叶轮叶顶间隙对轴向力的影响,发现叶轮轴向间隙对轴向力的影响比径向间隙大,但效率损失亦较大。在保证涡轮机效率不降低的原则下,对涡轮箱流道截面进行了改进,轴向力在发动机高转速下降低约8N。  相似文献   

2.
针对车辆上同时应用排气制动与涡轮增压的情况,研究了排气制动对增压器轴向载荷的影响。通过排气制动与增压器联动试验测量了增压器在各个工况下的轴向载荷,从而确定了数值计算所需的边界条件,并通过数值计算获取了增压器在各个工况的轴向载荷的分布情况。结果表明,与正常工况相比,增压器在排气制动工况下其轴向载荷显著增大,且排气背压越高,增压器轴向载荷越大;涡轮级轴向载荷反向且增大;压气机级轴向载荷显著下降,但方向不变。  相似文献   

3.
本文中针对同时采用排气制动和涡轮增压的车辆,分析其在排气制动工况下增压器的工作状态。通过排气制动与增压器联动试验得出数值计算所需的边界条件,并据此计算涡轮转子在稳态工况和过渡工况的轴向受力。结果表明,在排气制动工况下,增压器涡轮转子的轴向受力反向,且排气背压越高,涡轮转子所受轴向力越大;在工况切换过程中,涡轮转子所受突变载荷较大,最高值达221N,工况切换时间越短、背压越高,轴向冲击载荷越大。因此确定合理的排气背压和工况切换策略可有效降低涡轮转子所承受的轴向载荷。  相似文献   

4.
采用Numeca数值分析软件分析了3种不同出口结构形式的压气机叶轮性能,等出口大径情况下径流叶轮压比最高,斜流叶轮压比最低,效率方面则是半斜流叶轮最高。通过压气机流场分析发现,各转速小流量下,径流叶轮在叶轮出口轮缘一侧产生大范围的回流,斜流叶轮则在轮毂一侧产生较大范围的回流,而半斜流叶轮兼有径流叶轮和斜流叶轮设计特点,轮毂和轮缘两侧的流场均得到明显改善。在堵塞流量附近工况点,半斜流叶轮和斜流叶轮出口相对马赫数较径流叶轮略小,利于堵塞流量的增加。通过轴向载荷分析发现,由于斜流叶轮和半斜流叶轮相比等直径的径流叶轮压比较低,导致由压气机轮背指向压气机进口的轴向力减小,使得整个增压器转轴有向涡端运动的趋势,由此容易导致止推轴承压端磨损严重;与此同时,转轴移动也会使得叶轮与压气机蜗壳的轴向间隙增大,导致半斜流叶轮与斜流叶轮效率降低。  相似文献   

5.
增压器压气机密封性能模拟与试验研究   总被引:2,自引:0,他引:2  
采用Numeca数值分析软件建立了某汽油机增压器压气机端流场网格模型,并计算出增压器在低速近堵塞工况下进口压力为负压时压气机性能曲线,对压气机流场分析发现,轮背压力沿径向方向逐渐降低,在轴中心位置附近达到最小值,而在周向方向则变化较小。此外,在不同的转速下,随着进气口负压程度的加大,在轮背建立起来的压力逐渐降低,当进气负压增加到某一值时,若轮背临近密封环处的压力在大气压力附近波动,压气机发生漏油的风险提高。为了验证压气机负压能力预测的准确性,在现有压气机性能测试试验台架上开展了压气机密封性能测试,结果发现,在50 000r/min时,增压器压气机在-6kPa开始发生漏油,50 000r/min转速下则在-12kPa发生漏油,模拟分析结果与试验结果存在一些差异,而后就可能存在的原因进行了分析,以完善分析方法,提高增压器产品性能预测能力。  相似文献   

6.
针对涡轮增压器压气机叶轮在高原地区工作时潜在的轮毂疲劳失效模式,研究了高原环境下涡轮增压器转速的变化规律以及压气机叶轮轮毂疲劳失效危险部位的应力。在此基础上,建立了增压器压气机叶轮的轮毂疲劳可靠度计算模型,分析了增压器压气机叶轮轮毂疲劳可靠度随不同海拔高度的变化规律。研究表明,当发动机在高海拔地区工作时,涡轮增压器压气机叶轮发生轮毂疲劳失效的风险在增大,随着海拔高度的增加,压气机叶轮轮毂的疲劳可靠性在降低。  相似文献   

7.
6.废气涡轮增压器的结构如何? 图12-7所示为径流式涡轮增压器的结构图。废气涡轮增压器由压气机、涡轮及中间壳体组成。压气机部分由压气机叶轮2、压气机壳3和扩压器4等组成单级离心式压气机:涡轮机部分由涡轮壳12、涡轮和叶轮15、喷嘴环18和涡轮端盖板17等组成单级径流式涡轮机。压气机叶轮2与涡轮机叶轮15装在同一根轴上构成转子组.并支承中间支承体两端的浮动轴承21上。中间支承体左端装有压气机壳3.右端装有涡轮壳12。  相似文献   

8.
采用Numeca数值分析软件建立了车用小型涡轮增压器压气机端流场网格模型,并研究了不同叶顶间隙对压气机性能的影响,分析得出叶顶间隙对压气机性能影响较大,每增加0.1 mm间隙后压比降低约3%,效率则降低约2%。研制了压气机叶轮叶顶间隙可磨耗涂层,减小了叶顶间隙,研究发现:压气机试验峰值效率提升了近1.5%,各转速下压比也得到了不同程度的提升,涂层在增压器高转速运转较长时间后磨耗均匀,叶轮与涂层刮擦后完好无损。研制了涡轮机叶顶间隙耐高温可磨耗涂层,经发动机匹配试验对比发现,中低速扭矩提升了2%左右,燃油消耗率在1 883 r/min下降低了3.5%。对蜗壳涂层开展了200 h可靠性考核验证,发现涂层磨耗均匀无掉块,涡轮叶片与高温涂层刮擦后无损伤,验证了可磨耗涂层技术在车用小型涡轮增压器领域应用的可行性。  相似文献   

9.
为了控制军用可变截面涡轮增压器的喘振和满足其空气流量的要求,现已研制成一种离心式压气机的可变几何形状扩压器。此外还研制和试验了以下二种压气机叶轮:径向叶轮和后弯叶轮。 性能试验结果表明,可变几何形状压气机在所要求的大多数工况下,达到了流量和效率的指标。由工作曲线图可以看出,后弯叶轮比径向叶轮好。在空气流量大的工况下(在发动机额定转速时)后弯叶轮的压气机效率已高达80%;只是在空气流量非常小的工况下(发动机在最低工作转速时)由于叶轮开始失速,引起效率下降。因此可以确认:可变几何形状压气机适用于效率高和流量范围宽的涡轮增压器。  相似文献   

10.
以某废气涡轮增压柴油机为研究对象,以提高发动机性能为目标,使用CFD方法对其涡轮增压器的叶轮进行优化设计。通过分析叶轮内部流场,将叶轮叶片的叶型进行了改进设计,叶轮内部流场得到了优化。通过CFD计算得到了优化后的压气机MAP图,并将优化设计后的增压器安装到柴油机上进行了试验研究。结果表明,根据CFD计算结果对压气机叶轮结构进行优化设计具有可行性,优化设计的压气机能够在全转速范围内降低发动机燃油消耗率。  相似文献   

11.
基于雷诺平均纳维-斯托克斯方程与Realizableκ-ε双方程湍流模型,利用CFD软件建立了某大型涡轮增压器离心式压气机内部气体的可压缩流动仿真模型。分析了不同工况下压气机内部气流的速度、压力等流动特性,利用宽带噪声模型对压气机进行了气动噪声源数值研究。结果表明,叶轮区域是压气机的主要气动噪声源;压气机内扰动强度和叶轮转速是气动噪声声功率的主要影响因素;宽带噪声与湍流强度的分布趋势一致。研究结果对分析压气机的气动噪声源产生机理及其控制具有参考价值。  相似文献   

12.
一种测量车用涡轮增压器转子轴向力的新方法   总被引:3,自引:1,他引:2  
介绍了电阻应变片的工作原理,提出了应用电阻应变片来测量涡轮增压器轴向力的方法,并进行了某涡轮增压器的轴向力测量试验。所提出的涡轮增压器转子轴向力测量方法可为止推轴承的结构设计提供依据。  相似文献   

13.
汽油机领域增压技术(Eco-Boost)的问世为技术人员带来新的挑战。挑战之一是在非设计工况下,进入涡轮增压器的气流会产生气流噪声。在某些运行工况下,当进气质量流量和压比达到某一数值时,压气机叶轮表面气体分流会产生宽频噪声,被称为"啸叫"噪声。可以用增压器吹风试验和发动机台架试验来检测这种气体流动噪声。为了开发一种有效的设计,有必要了解这种噪声产生的基本机理。介绍为研究进气条件对啸叫噪声的影响而进行的计算气动声学分析,包括整个压气机叶轮和涡壳在内的三维计算流体动力学模拟。该增压器叶轮由6个主要叶片和6个分流叶片组成。基于计算机辅助工程的结果,提出一种压气机引导边缘入口台阶与进口导向叶片(或旋转叶片)组合的方案,以降低啸叫噪声,并通过试验证实这种创新设计的有效性。  相似文献   

14.
转子是增压器的关键部件,它的转速非常高,因而对转子的动平衡提出了很高的要求。例如GJ-110型增压器要求压气机叶轮不平衡量<0.5μ,涡轮叶轮不平衡量<0.5μ,转子总成压气机端不平衡<1.0μ。这里所说的μ,是指质量中心与旋转中心线距离为1微米时所产生的不平衡力矩。  相似文献   

15.
放气阀增压器在柴油机高原环境适应性改进中的应用研究   总被引:1,自引:0,他引:1  
基于柴油机进排气高原环境模拟试验平台,针对所研制放气阀涡轮增压器,通过配机试验研究,获得结论如下:基于由冷态测量获得的放气阀开启特性,在考虑放气阀几何结构、排气脉冲压力波动等因素影响后得到预测特性,与高原模拟试验结果具有较好的一致性,偏差在7%以内;放气阀涡轮增压器具有较高的扭矩储备系数,可用于高原环境适应性动力改进,海拔4000 m工况可获得1.27扭矩储备系数,与常规增压器平原扭矩储备系数相当;在高原环境发动机进气量需要增加、压后压力需要提高的情况下,放气阀与平原工作状态近似,在最大扭矩点之后处于开启状态;与平原相比,高原4000 m工况压气机压后压力降低约60 kPa.通过更换高压比压气机放气阀涡轮增压器,在保持原有配机性能近似不变的情况下,可有效解决高原增压器超速问题,可使增压器转速在平原状态下降低10000 r/min左右,在高原4000 m工况,工作转速与更换前平原工作转速相当.  相似文献   

16.
增压器混流涡轮的设计和试验研究   总被引:1,自引:1,他引:0  
为了提高车用增压器涡轮的性能,针对某柴油机匹配的JP78B增压器进行了混流涡轮设计和试验研究。利用叶轮机械CFD软件NUMECA,对所设计的8个混流涡轮叶轮进行了叶轮内部流动的计算,分析了叶轮进口倾斜角、叶轮进口攻角、叶轮宽度和叶片数对混流涡轮叶轮性能的影响,进行了混流涡轮和径流涡轮的性能试验。试验结果表明,混流涡轮比径流涡轮效率高,并且涡轮最高效率点的u/co小。  相似文献   

17.
豪彦 《汽车与配件》2001,(24):28-30
二、柴油发动机新技术 1.废气涡轮增压、中冷技术 废气涡轮增压系统由涡轮增压器、中冷器及其它附件组成(见图1) 废气涡轮增压器的工作原理是:排气管接在涡轮壳上,发动机排出具有一定能量的废气经涡轮壳进入废气的压力和温度下降,流速提高,然后按一定方向冲压涡轮叶轮,使其高速旋转。废气的压力、温度越高,其转速也越高。与涡轮轴同轴的压气机叶轮也以相同转速旋转,  相似文献   

18.
高功率涡轮增压柴油机需要一个装有高压比、宽流量、不喘振的高效率压气机的有效进气系统,同样,也需要有可变截面喷咀的高效率涡轮,以便在发动机低转速和小空气流量运转时,涡轮保持高转速。 为了满足上述要求,美国陆军坦克机动车辆研究发展局制订了一项研制涡轮增压器的规划,其中规定涡轮增压器采用后弯叶轮的离心式压气机和径流式涡轮。为了控制喘振,压气机采用楔形可转动叶片扩压器;为了控制涡轮进气面积,径流式涡轮采用可转动喷咀叶片。 涡轮增压器经过几次反复设计和台架试验后,又同发动机一起进行了广泛的试验。通过试验证实,采用这种涡轮增压器能使柴油机性能得到相当大的改善。  相似文献   

19.
涡轮增压器压气机级性能仿真预测研究   总被引:1,自引:1,他引:0  
采用Fine/Turbo软件对H145涡轮增压器压气机级进行数值模拟及流场分析。介绍了涡轮增压器压气机级建模及分析过程,分析了不同模拟方法对最终模拟结果的影响。结果表明,采用CFD数值模拟和流场分析的方法对压气机级性能进行预测是可行的,可以满足增压器多方案性能优化选型需求。  相似文献   

20.
二级增压系统压气机效率的优化策略研究   总被引:1,自引:0,他引:1  
对配置在1台重型车用柴油机上的二级增压系统进行了性能研究。结果表明:放气阀开启的二级增压系统存在进气能力不足、压气机效率低的问题;关闭二级增压放气阀后,在中、低转速低负荷工况仅采用高压级增压器,而其余工况借助高压级涡轮旁通阀实现进气压力可调,增压系统压气机效率均可超过60%,且最大进气压力可达334kPa;针对不同工况采用不同增压形式,通过控制涡轮旁通阀开度使二级增压系统进气压力及压比分配得到有效调节,可以改善压气机效率及燃油经济性,为二级增压系统与重型柴油机的性能匹配提供技术参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号