首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
为指导波形钢腹板PC连续梁桥异步悬臂施工中主梁临时横撑的优化设计,以奉化江大桥为背景,采用有限元法建立0~7号节段异步悬臂施工实体模型进行静力及屈曲分析,并对主梁临时横撑的结构形式、布置方式及槽钢型号进行比选。结果表明:相对于上下平联+中间桁架撑和上下平联+剪刀撑,采用上下2榀桁架撑可保证结构安全性及施工便捷性;相较于布置单道临时横撑,布置2道临时横撑更能保证波形钢腹板施工期的稳定性、可大幅度减少波形钢腹板的位移量;临时横撑采用12.6型槽钢,能充分发挥材料性能,经济性好。  相似文献   

2.
为了研究波形钢腹板箱梁桥异步施工过程中结构的受力性能,验证各关键部位的安全性,以奉化江大桥主桥为背景,针对该桥异步施工过程中的受力最不利工况——主梁16号节段的底板浇筑工况设计制作足尺模型(长7.2m、宽2.3m),采用两点加载方式进行静载试验,研究施工荷载作用下梁体挠度、波形钢腹板侧向变形、波形钢腹板及钢翼缘板的应力分布。结果表明:施工荷载作用下,混凝土顶、底板均未出现裂缝,波形钢腹板剪应力远小于其抗剪强度设计值,波形钢腹板自承重异步施工可满足结构受力要求,具有足够的安全储备;波形钢腹板作为自承重结构在竖向荷载作用下产生的竖向挠度及侧向变形较大;波形钢腹板上翼缘板挂篮作用点处为结构受力关键部位,施工时应对其进行局部加强。  相似文献   

3.
大跨波形钢腹板小箱梁顶推施工技术研究   总被引:1,自引:0,他引:1  
针对传统预应力混凝土箱梁顶推施工速度慢、工期长及跨径受限制等问题,引入波形钢腹板和Φ21.8大直径预应力束,设计了大跨波形钢腹板小箱梁,提出了波形钢腹板箱梁预制组拼顶推和临时钢斜撑相结合的施工方案,实现了大跨度梁桥顶推跨径和顶推速度的突破,其成果可供类似的设计和施工参考。  相似文献   

4.
针对波形钢腹板异步施工过程中位移变化复杂的问题,结合有限元软件Midas的整体结构分析和Ansys局部细化分析,讨论了关键阶段异步施工过程中波形钢腹板梁控制位置的位移变化趋势。提出了针对波形钢腹板施工的位移监控方法。以主跨为130m的波形钢腹板PC梁桥为工程实例,采用该文提出的新方法,结合现场实测数据,验证了该方法的可行性。研究表明:在施工位移控制过程中,对于复杂的钢混结构,需要建立精确的局部模型来校正整体模型。  相似文献   

5.
为了分析波形钢腹板PC组合梁在桥梁顶推施工过程中临时预应力钢束的对结构受力的影响,确保桥梁在顶推施工过程混凝土结构不发生破坏,以国内第一座采用整体式顶推施工的大跨度波形钢腹板PC组合梁为例,采用板壳实体模型详细模拟了波形腹板组合箱梁的结构和具体的体内、体外预应力,计算了分析了顶推施工最不利工况下临时预应力钢束的合理位置设置、预应力大小和钢束数量对组合梁受力的影响情况,提出确保梁体结构安全的临时预应力钢束的合理设置方法,可为同类结构设计施工提供参考。  相似文献   

6.
鄄城黄河公路特大桥波形钢腹板PC结合梁施工技术   总被引:1,自引:1,他引:0  
山东鄄城黄河大桥为主跨120 m的大跨径全连续波形钢腹板PC结合梁公路桥。综述该桥主要施工技术:采用支架法施工0号块;利用特制桁架安装定位首块波形钢腹板;通过标高、轴线及节段钢腹板变形控制桥梁线形;波形钢腹板悬臂节段采用桁车悬浇施工;波形钢腹板现场采用螺栓先临时固定后施焊的连接方法;钢-混凝土结合部位施工时应重点控制混凝土施工,同时设置横坡及安装止水带来防水。  相似文献   

7.
《公路》2020,(5)
为进一步研究波形钢腹板PC组合箱梁桥的新型施工工艺——异步悬臂浇筑施工,以山东小清河特大桥为工程背景,基于Midas FEA有限元分析软件,建立全桥上部结构精细化实体有限元模型,通过划分62个施工阶段来模拟异步施工全过程,并对施工过程中混凝土和波形钢腹板的应力及结构挠度进行详细分析。研究结果表明:在异步施工过程中,结构受力合理,应力始终处于安全范围内,验证了工法的可行性,并根据结构应力和挠度变化规律对施工监控提出了建议。  相似文献   

8.
为有效指导PC系杆拱桥的施工,对该类桥梁施工阶段的稳定性及临时横撑对结构稳定性的影响进行研究.以江苏省新建省道336公路桥为背景,采用MIDAS Civil建立桥梁空间有限元模型,对3个施工控制阶段结构的稳定性及临时横撑设置与否、设置位置及形式对暂态拱稳定性的影响进行分析.分析结果表明:该桥施工阶段具有较好的稳定安全系数;施工阶段的吊杆张拉对全桥的稳定性有负影响;对称设置临时横撑时,同类型横撑设置在1/4跨径处效果最为明显;在相同位置设置X形临时横撑对结构稳定性贡献最大;横撑的间距和形式选择还需综合考虑桥梁美学、经济性及施工方便.  相似文献   

9.
以某大桥波形钢腹板异步浇筑施工为背景,针对波形钢腹板施工期局部应力集中问题,采用有限元分析软件Ansys建立波形钢腹板有限元模型并模拟异步浇筑施工过程。基于有限元模型和现场实测数据,得到了各施工工况下桥梁关键截面波形钢腹板的局部应力状态。研究表明:有限元模型与实测应力数据相对吻合,随着施工的进行,各项应力值均不断增大,0#块根部波形钢腹板剪应力实测值在施工到8#悬臂节段时达到最大值(23.3 MPa),低于有限元计算值(26.5 MPa)和钢腹板材料的强度设计值(310 MPa)。  相似文献   

10.
波形钢腹板简支箱梁桥具有自重轻、跨径大、腹板无开裂、预应力较高等优点,将此类桥梁运用于预制装配化施工,具有较大的社会效益和经济价值。为方便其推广应用,对结构计算过程中的荷载横向分布系数计算进行分析,确定其最合理的计算方法为铰接板法。此外,分析横隔梁的材质及数量对荷载横向分布的影响,确定横隔板的最优布置方式。该结果为波形钢腹板简支箱梁桥横隔板形式的选择及结构计算提供了理论依据,对推广波形钢腹板箱梁桥的应用以及预制拼装化施工具有较好的实用价值。  相似文献   

11.
文泰高速葛溪大桥左、右线分幅设置,主桥包含4个跨径均为(55+100+55) m的波形钢腹板PC连续刚构桥。该桥左线2号桥及右线桥均采用传统菱形挂篮悬臂施工,左线1号桥采用异步挂篮悬臂施工。为对比传统菱形挂篮与异步挂篮悬臂施工的效果,采用MIDAS Civil软件建立施工阶段有限元模型,结合现场实测数据,对2种工法施工过程中主梁的线形、应力及施工效益进行对比分析。结果表明:采用异步挂篮施工时,波形钢腹板的制造线形需要设置较大的预拱度;2种工法施工过程中箱梁顶、底板正应力水平基本一致,采用异步挂篮施工时波形钢腹板的剪应力略大;异步挂篮施工有3个独立的工作面,可以节省波形钢腹板的安装时间,经济效益明显,具有较高的操作安全性,建议在施工工法比选时优先考虑。  相似文献   

12.
侯德军  刘鹏 《路基工程》2012,(3):121-123
结合白土山隧道洞口段台阶法(临时横撑)施工,采用有限元数值分析法,模拟了台阶法(临时横撑)在大断面隧道洞口段施工过程中围岩位移和支护结构受力特性,通过计算结果的分析,确定了该法的安全性和合理性,为该法的设计和实施提供依据。  相似文献   

13.
为提高内倾式斜拉桥桥塔施工的安全稳定性,需设计合理的桥塔施工及临时横撑施工方案,并对其施工过程中进行监控。以某在建内倾式斜拉桥桥塔为例,根据模型计算,对原桥塔施工临时横撑施工方案进行了优化,优化后的新方案在确保安全的前提下可少布置一道临时横撑。根据模型计算出各临时横撑的顶推力,并对其在最不利施工阶段下进行验算,验证了顶推力的可行性。并在塔柱根部关键截面以预埋应变计的方式对桥塔施工过程进行监控,实测结果与模型计算结果比较表明,模型计算结果更加保守安全,新方案桥塔施工有足够的安全余量。通过以上的研究说明,新方案具有经济可行和安全性。  相似文献   

14.
波形腹板组合梁桥异步浇筑施工以波形钢腹板作为挂篮主要承重构件,将节段顶、底板混凝土与腹板划分成多个独立工作面,是一种新型高效的施工方法。为研究悬臂大节段波形腹板在挂篮异步施工过程中的安全、可靠性,通过实际工程——北京达摩沟大桥,利用Midas Civil建立全桥模型,对施工全过程进行整体分析,并结合该桥大节段长悬臂腹板支撑挂篮受力的特点,利用ABAQUS建立关键工况局部模型,研究腹板节段长度对异步浇筑线形控制的影响,推导节段变形计算公式。结果表明:施工全过程结构受力安全,腹板悬臂长度对浇筑前后所在节段的变形影响较大,异步浇筑过程结构呈现悬臂根部至N-1节段、N节段、N+1节段3个区域不同的受力模式,提出的变形计算公式理论值与施工实际下挠值吻合较好,可为该类桥型的异步浇筑施工提供参考。  相似文献   

15.
针对波形钢腹板PC(预应力混凝土)箱梁桥传统节段悬臂浇筑施工中存在的问题,将波形钢腹板预制装配化施工和异步悬臂浇筑施工工艺相结合,开发一种预制装配化波形钢腹板PC箱梁桥节段悬臂施工方法,将传统工艺中在空中悬臂完成的节段悬臂浇筑及底板与波形钢腹板连接施工作业转变为工厂化预制,降低节段悬臂施工中高空作业工序组织难度,并通过与传统施工工艺工期和经济效益对比分析其推广价值。  相似文献   

16.
为研究波形钢腹板PC连续梁桥在异步悬臂施工不同工序下的受力性能及施工工期,以主桥长360m的奉化江大桥为背景,采用有限元软件建立该桥箱梁的1~4号节段模型,分析按不同顺序浇筑箱梁顶、底板混凝土,吊装波形钢腹板时箱梁结构受力,并比较所需工期。结果表明:异步悬臂施工时,PC梁箱室中间小部分顶板混凝土处于受拉状态;波形钢腹板位移变化较大。若仅考虑结构受力,先浇筑前一节段顶板,再浇筑本节段底板,最后吊装后一节段波形钢腹板的方案施工期间挠度最小,受力最优;若综合考虑结构受力性能和施工周期的影响,同时浇筑前一节段顶板和本节段底板,最后吊装后一节段波形钢腹板的施工工序最优。  相似文献   

17.
为了提高双向倾斜桥塔在施工过程中的稳定性和安全性,需要合理设计横撑作为临时结构,并对其进行施工控制.以某斜塔空间扭索双索面斜拉桥方案为背景,在对全桥模型进行复核和施工阶段计算后,提出横撑设置方案;对主动横撑施工过程进行监控,并对施工误差进行分析,对拆除横撑的施工控制方法及横撑拆除时机进行研究.得出如下结论:在主动横撑设计时应主要控制中塔柱根部混凝土截面应力,以内力控制为主、变形控制为辅的原则确定主动横撑预顶力;主动横撑的预顶力值确定应该包括模型受力计算值、温度影响值以及焊接变形所产生的内力变化值;施工过程中需要提高塔柱施工、横撑焊接的质量,并合理安排横撑的拆除时机.  相似文献   

18.
波形钢腹板矮塔斜拉桥以其新颖的结构形式、优良的受力特性、较好的材料利用效率,修建数量日益增多,因其多采用薄壁钢腹板和刚构薄壁高墩的结构形式,使得对该类桥型施工过程中稳定性问题的研究就显得尤为重要。研究方法:利用ANSYS有限元软件建立朝阳沟波形钢腹板矮塔斜拉桥空间块体+板壳组合单元精细计算模型,计算纯剪切荷载作用下钢腹板的失稳模态;选取施工关键阶段,计算悬臂施工状态的弹性稳定性;考虑材料非线性、几何非线性和混凝土材料的开裂和压碎特性,计算悬臂施工状态非线性稳定性。结果表明:波形钢腹板构造按弹性屈曲强度公式计算最小值为348.3 MPa(合成剪切屈曲),有限元方法计算的剪切屈曲最小值为517.9 MPa,均大于材料剪切屈服强度199 MPa,结构承载力按剪切屈服强度控制;矮塔斜拉桥拉索的弹性支撑作用,增强了波形钢腹板稳定性,施工中主要是主墩的平面内侧倾失稳,不会出现波形钢腹板的失稳情况;考虑材料非线性和几何非线性求得悬臂施工阶段的非线性稳定系数仅为弹性稳定系数的41%~34%,悬臂越长,非线性效应对稳定性的影响越突出;施工荷载对悬臂施工状态的稳定性影响很大,最不利工况下结构的非线性稳定系数为5.13,结构稳定性仍满足规范要求。  相似文献   

19.
针对现有波形钢腹板连续刚构桥跨度偏小的情况,分析影响该类桥梁极限跨度的主要因素,并提出解决限制其跨度增长的关键问题的相应技术措施。分析表明:波形钢腹板的整体稳定性、箱梁的扭转及畸变会极大地限制波形钢腹板箱梁桥的跨度,其最大跨度应该能够达到甚至超过混凝土腹板箱梁桥的跨度。对于30mm厚的1600型波形钢腹板,当钢腹板整体屈曲失稳分别发生在屈服区和非弹性区时,波形钢腹板箱梁连续刚构桥的最大跨度可分别达到162m和238m;增大波高或采用复合波形钢腹板时,该类桥梁的跨度能超过300m。当波形钢腹板箱梁桥的跨度超过160m时,可以考虑采用复合波形钢腹板;当跨度超过230m时,应该采用复合波形钢腹板。设置适当数量的横隔板可以提高波形钢腹板箱梁的抗扭转及抗畸变能力,可采用钢桁架等轻型横隔板以减轻其自重。  相似文献   

20.
波形钢腹板组合桥梁相比于传统桥梁具有自重轻、防止腹板开裂、力学性能好等许多优点,得到越来越多青睐,然而,国内波形钢腹板的安装工法还不够完善。现提出一种新型波形钢腹板安装工艺,对国内波形钢腹板组合箱梁悬浇施工0号块波形板安装控制方法进行论述。其中,对安装过程中的关键控制点及其方法做了详细细说明和分析,能极大地改善工法和提高施工效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号