首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
随着国内高速铁路网不断完善、城市内部和城际之间的轨道交通快速发展,城际列车设计速度逐年提高,达到160 km/h,其在运行过程中将面临一系列空气动力学问题。为分析160 km/h城际列车运行时的综合气动性能,利用STAR CCM+软件,采用三维雷诺时均Realizable k-ε湍流模型模拟城际列车的周围流场特性,应用重叠网格模拟列车穿越隧道的滑移运动,将原始头型、改进头型和车顶设备城际列车模型进行数值仿真分析,研究160 km/h城际列车明线运行和通过2种不同横截面积隧道时的流场特性和车体的受力情况,分析城际列车在不同工况下的气动性能。研究结果表明:适用于干线铁路160 km/h城际列车的头车气动阻力较大,通过改进头车的凹槽外形和空调导流斜面,可减少头车所受气动阻力,头车的阻力系数由0.397减小为0.349,降幅12%,整车减少8.26%。横风条件下,头车车身阻力系数随风向角的增大而减小,中间车和尾车的车体阻力系数随着风向角增大而增大,头车倾覆力矩系数最大,沿车身方向降低,尾车最小。城际列车以相同速度通过50 m2和80 m2隧道时,改进...  相似文献   

2.
对3~8辆编组列车以350km· h-1速度运行时,不同速度横风作用下的气动特性进行仿真研究,并建立列车的阻力系数与列车编组辆数之间的无量纲关系.研究结果表明:对3辆车编组列车的气动特性分析不能取代对其他编成辆数列车的几动特性分析;不同编成辆数列车阻力系数随着横风风速的增加而增大,3辆车编组列车的阻力系数不超过8辆车编组的列车的一半;列车的侧向力系数和倾覆力矩系数随着列车编成辆数的增加而减小;列车编成辆数对头车的阻力系数、升力系数、侧向力系数和倾覆力矩系数影响较小,但是对尾车的影响较大;头车的侧向力系数和倾覆力矩系数明显高于尾车和中间车,尾车的倾覆力矩系数最大值不超过0.4,而头车的最大可达0.7;由于头车的气动安全性比其他位置车辆的低,用头车的气动安全性评估整个列车的气动安全性会偏于保守,但合理、可行.  相似文献   

3.
采用风洞试验方法对城际动车组气动阻力优化进行研究,获得不同侧滑角下的城际列车明线及横风气动阻力,并分析头部外形、风挡结构、车底设备对动车组气动阻力的影响规律。研究结果表明:侧偏角在0°~10°范围内,随着侧滑角增加,头车阻力系数逐渐增大,中间车阻力系数先增大后减小;尾车阻力系数对于侧滑角最敏感,头车次之,中间车最小。无横风时,设置外风挡显著减小了头车及尾车阻力系数,但导致中间车阻力系数增加约16.7%,整车阻力系数仅减小4%左右。安装设备舱后,车体底部杂乱的气流变得平顺,无横风时整车气动阻力系数较减小22%,而横风环境下整车气动阻力系数降幅可达25%。  相似文献   

4.
基于Realizable k-ε方程的DES数值模拟方法,研究某高速列车头、中和尾车不同区域对整车气动阻力系数的贡献值,并结合风洞试验结果,验证本文所采用的计算方法,计算与风洞试验结果两者偏差在2%以内;各车辆的瞬态气动阻力系数时程曲线在均方根值上下波动,其中头车的脉动幅度最小,尾车最大;头车、尾车的头部曲面区域及各个车辆转向架区域的气动阻力占整车气动阻力的77.8%;前端转向架区域气动阻力系数从头车、到中间车、到尾车大幅度减少,后端转向架区域气动阻力系数逐渐增加;从流场结构来看,列车的头部、风挡、车底结构以及车尾处产生了大量的漩涡;沿车长方向,头车车体附近的漩涡情况好于中车和尾车。  相似文献   

5.
西部风沙地区强风沙流对高速列车运行带来巨大安全隐患。高速列车的行驶线路一般分为平直地面、路堤及高架桥等,不同线路类型对高速列车气动特性的影响差异明显,尤其在强横风下,列车运行的流场特性更加复杂。为研究风沙环境下不同线路类型对高速列车横风气动特性的影响,采用数值模拟方法对列车运行速度250 km/h,横风风速分别为10,20,30,40,50 m/s,线路结构分别为平直地面、5 m路堤及10 m高架桥等不同工况下的列车气动性能进行仿真对比分析。计算结果表明:风沙环境下列车迎风侧正压区域及背风侧负压区域相比无沙环境均增大,其中,头车在平地工况下压力增幅最大,路堤及高架桥工况较小;风沙流中沙粒增加了列车的阻力,随着横风风速增大,头车阻力系数减小,尾车阻力系数增大,中间车阻力系数基本不变,列车侧向力系数均增大;在同一横风风速下,不同类型线路对头车的阻力系数和侧向力系数影响最大,其中,在路堤工况下列车稳定性较差,更容易发生侧翻危险。  相似文献   

6.
列车空气动力性能与流线型头部外形   总被引:5,自引:0,他引:5  
采用数值计算、动模型试验、风洞试验、实车试验和理论分析等方法,研究列车流线型头部长度、宽度、高度及耦合外形对列车交会压力波、空气阻力和升力的影响,得到一系列理论关系式。研究结果表明:①增加列车流线型头部长度,可以有效地改善列车空气动力性能,列车交会压力波随流线型头部长度增加而呈对数减小,头车阻力、升力绝对值均随流线型头部长度的增加呈线性减小,尾车阻力与流线型头部长度呈二次幂减小;②流线型头部纵向对称面最大控制型线从外凸到内凹,列车空气阻力、空气升力和交会压力波基本不变,减小鼻尖部位过渡曲线的曲率半径可以有效降低列车交会压力波;③流线型头部俯视最大控制型线为方形时产生的交会压力波最小,尖梭形的头车空气阻力和升力绝对值较小;④减小列车空气阻力和降低列车交会压力波,既矛盾又统一,列车气动头部外形设计需要综合考虑各种因素。  相似文献   

7.
为研究城市轨道列车气动特性以及底部部件对列车气动特性的影响,针对三节车模型进行简化,保有底部部件较高完整性,采用Realizablek-ε湍流模型预测列车周围流场。数值计算结果表明:列车气动阻力分布呈现出尾车阻力最大,占三节车总阻力的48%;中间车阻力最小,占总阻力的14%。其中转向架分别占头车、中间车和尾车总阻力的15.1%,56.4%和23.0%。车底设备分别占头车、中间车和尾车总阻力10.5%,10.3%和8.6%。因此对于头车、尾车采取减阻方案首先是采用流线型头型的方式减少流动分离现象。对于中间车减阻方法则要首先针对底部部件,采取密封舱的方式减少其产生的压差阻力。通过优化列车头型发现列车气动特性得到明显的改善,其中列车头车、中间车和尾车阻力分别为原始情况下的61.4%,70.1%和58.3%。在流线型外形基础上进一步稳定列车底部区域流场也有效改善了底部区域部件气动特性。  相似文献   

8.
基于空气动力学数值模拟方法,针对列车不同部位的转向架和转向架结构表面的气动阻力分布进行分析,对高速动车组列车整车气动效应进行数值仿真。研究结果表明:转向架流场区域在靠近来流端的上部会形成部分死水区,该区域流场与外部质量交换较小,转向架结构表面在来流方向上游会形成一个正压区,在下游方向的转向架结构表面会形成小范围的负压区。列车头车转向架气动阻力明显高于中间车和尾车,其中列车头车I位转向架受到的气动阻力最大,其次是头车II位端转向架,列车的中间车和尾车转向架阻力分布较为均匀,均为头车转向架阻力的60%左右。  相似文献   

9.
文章采用计算流体力学方法,针对高架桥高度变化对列车气动特性的影响进行了研究。结果表明,随着高架桥高度的增加,头车的倾覆力矩系数略微增大,而中间车的倾覆力矩系数逐渐减小,尾车的倾覆力矩系数基本不变。高架桥高度达到15m后,列车的气动六分力基本不随高架桥高度的增加而变化。  相似文献   

10.
采用空气动力学和车辆动力学2种分析方法,建立考虑横风作用的高速列车空气动力学模型,分析不同风速及车速条件下列车所受的气动载荷特性变化规律;建立车辆-轨道耦合动力学模型,对高速列车在不同风速横风和轨道不平顺组合作用下头车、尾车和中间车的蛇行失稳临界速度、蛇行振动极限环幅值、蛇行振动频率、蛇行失稳特征等进行对比分析。结果表明:高速列车通过横风区段时产生的气动载荷对其蛇行失稳临界速度有明显影响,头车的蛇行临界速度较无风时明显下降,尾车及中间车的降幅次之;无风与风载工况下车辆的蛇行失稳形式存在本质区别,无风工况下车辆易发生二次蛇行,风载作用下车辆易发生一次蛇行;风载作用下,车辆发生蛇行失稳的最不利工况为较大的等效气动横向力和较大的气动升力共同作用的组合工况;风载和轨道不平顺的持续时间对车辆蛇行运动极限环振动幅值会产生影响,因此在评估高速列车在大风工况下的运行安全性时,有必要考虑实际的风载和轨道不平顺激励的大小和持续时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号