共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
4.
在智能型电子防滑器控制的研究中,通过试验数据的仿真研究表明了防滑器模糊神经网络控制模型建立的正确性。在此基础上,本文利用车辆盘形制动模拟试验台进行了室内车辆制动防滑模拟试验,以进一步验证其所建立的防滑器智能控制模型,并考核滑器模糊神经网络控制模型的滑行判断能力和防滑性能。由试验结果表明在智能型电子防滑器控制系统的研究中,所建立的防滑器控制模型具有专家知识和推理能力,能够根据加减速度和冲动(由于试验台的局限,本文滑移率控制参数为零)两个变量正确判断轮对的运动状态,特别是冲动变量的引入使得控制模型可以提前检知车轮的运行趋势,防止滑移率和减速度的过度增大,避免滑行的发生,模糊神经网络在防滑器上的成功应用将开创防滑研究的新阶段。 相似文献
5.
智能型电子防滑器控制系统的研究 总被引:3,自引:1,他引:2
近几年来,我国列车速度大幅度提高,对制动距离的要求更加严格,要求防滑器在制动过程中充分利用累轨间的粘着以尽量缩短制动距离,保证行车安全。因此,理相怕防滑器必须能够实时跟随轮机间的最佳粘着。防滑器的控制一般以经验判剧来判断各轴运动状况,并进行制动缸坟力的调节。由于控制对象的复杂,尤其是影响轮轴间粘着系数的随机因素太多,难以用传统的控制理论建立控制模型,文中利用模糊神经网络控制理论进行了防滑器智能控制模型的研究,并开发了相应的仿真软件。根据仿真表明,文中建立的控制模型的确能够随着轮轨间粘着的变化而自动调整制动力。 相似文献
6.
7.
8.
列车制动时,闸瓦或者制动盘产生的制动力,是使通过轮轨问作用力使列车减速的。然而,如果制动力过大或轮轨粘着系数降低,车轮就会抱死滑行。滑行不仅会造成列车制动阻力减少,制动距离增加,还会擦伤车轮,影响列车安全平稳运行。列车提速后,特别是旅客列车速度提高后,为了尽量缩短制动距离,必须要充分地利用粘着力,车轮纵向滑行的几率也相应增加。为了防止车轮滑行,需要在提速客车上安装防滑器。 相似文献
9.
10.
完整地介绍了TFX1型防滑器的测速系统,分析了各种测速误差对防滑器的影响。论述了防滑器采用的相对轮径修正方法,详细研究了各种计数误差的影响,确定了TFX1型防滑器采用的独特测速方法。 相似文献
11.
12.
13.
14.
15.
16.
17.
论述了提高重载内燃机车炽着牵引力应从两方面进行研究:确保柴油机在全工况范围充分发挥出牵引功率的电气控制系统以及牵引电机附加单独调节功率系统,机车轮机呆控蠕滑特性控制,使每一牵引轮对发挥最大粘着牵引力,提出了本项目应研究的内容,及其用于重载和高速机车上将带来的巨大效益。 相似文献
18.
介绍TFX1型防滑器的系统组成,防滑控制原理,系统诊断及故障处理方法,系统软件设计以及电源自动通断,轮径自动修正等功能,还介绍了TFX1型防滑器为适应我国铁路需要所特有的停车系统诊断试验方法,相邻轴速度部件互补以及运行里程累计及显示功能。 相似文献
19.
20.