首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于Matlab/Simulink建立了用于研究车辆制动稳定性的7自由度仿真模型;使用V—Realm Bulider2.0建立了相关的虚拟场景,并通过VR工具箱提供的接口实现了Simulink模型与虚拟世界的关联,从而可以利用Simulink模型产生的信号数据控制和操纵虚拟世界中车辆的运动状态。通过仿真结果及其虚拟演示,证实此模型能够很好的体现车辆在制动时的运动特征。  相似文献   

2.
传统的车队在实现车辆纵向队列控制时,仅仅依靠雷达或者视觉传感器进行感知,从而致使车辆获取信息的能力有限,无法满足车辆在复杂交通环境下的跟随性能。为了克服雷达和传感器的不足,文章将车车(V2V)相连通信技术应用于车辆的纵向协同控制系统中,通过车辆上搭载的车载单元(OBU)之间的通信进行数据交互。首先,设计车队纵向跟随的控制策略,选择固定车头时距的间距跟驰策略,根据前车状态反馈对后车车速进行调节,该方法能够保证后车的跟驰安全,提升跟驰的稳定性。然后基于Prescan/Simulink建立车队纵向协同控制系统的模型和实验场景,仿真结果证明车辆纵向跟随控制策略的准确性和间距跟驰策略的准确性。  相似文献   

3.
设计了一种基于车车通信技术的PI控制算法车辆巡航控制系统。采用DSRC短程无线通信方式获取周边车辆位置、速度及行驶方向等信息,弥补传统巡航控制系统存在的不足。从车间距策略入手,采用PI控制方法,使智能车保持与前车的行驶间距,确保安全行驶,并在Carsim/Simulink仿真平台上设计了仿真试验,证明了提出的PI控制算法具有良好的跟踪性能。在安徽省芜湖市千岛湖路附近的无人路段开展了实证研究,结果表明,系统能够实现稳定的巡航跟车功能。  相似文献   

4.
为了精确模拟城市交通网络中行驶车辆之间的跟驰行为,在研究跟驰状态下车辆行驶特性的基础之上,考虑车辆行驶的最大限制速度和前车速度,对基于最大车速的广义力模型进行改进.改进的跟驰模型将处于跟驰状态的车辆与前车之间的期望车间距看作是与前车、目标车车速相关的时变量.将该模型与基于最大速度的广义力(GF)模型分别用于模拟车辆跟驰过程,与实测数据进行图表对比分析,表明该模型的仿真结果更接近实际的交通流特性.  相似文献   

5.
针对车辆协同驾驶领域中的跟随过程,建立了安全距离控制模型,采用BP神经网络PID控制策略设计了控制器,并通过MATLAB/Simulink软件进行仿真分析,将BP神经网络PID控制与传统PID控制的控制效果进行了对比,最后运用缩微环境下的智能车辆系统试验平台设计了Update算法,完成了跟随试验验证。仿真和试验结果表明,本文设计的智能控制器减小了车间距误差,提高了控制准确性,能满足车辆安全跟随行驶要求。  相似文献   

6.
实际观测表明,路边停车区泊车时的车间距分布符合高斯幺正系综分布,而道路交叉口红灯前车辆排队时的车间距分布符合高斯辛系综分布.文章探究了这两者的差别,并提出了一种基于马尔科夫链间距模型的解释.计算机仿真的结果表明,这个模型能较好的解释为什么在相似车辆运动情形下会产生2种不尽相同的分布;表明马尔科夫链间距模型可以广泛应用于交通仿真领域.  相似文献   

7.
针对多车协同控制系统中,传统控制算法需要准确获取系统中与驾驶员驾驶行为相关的参数以及与车辆系统动力学相关参数等问题,提出基于数据驱动的自适应动态规划控制算法。以有人与无人驾驶车辆混行的多车协同控制系统为研究对象,通过分析系统的横纵向控制模型,推导出系统状态方程,采用递推数值方法在线逼近最优解,并通过对最优反馈控制矩阵进行优化求解,得到最优控制输入。该算法简化了系统的控制输入参数,仅仅利用V2X通信获得的车辆的前轮转角以及车辆期望的纵向加速度作为控制输入,即可实现无人驾驶车辆的优化控制。基于Carsim和Simulink进行联合仿真测试验证,结果表明,该算法控制参数简单、收敛速度快、控制精度高、适应性强,能够控制无人驾驶车辆在多车系统中保持期望的车速并且与前车保持期望的车间距,同时在任意曲率道路上行驶时与车道中心线之间的横向误差趋于0。   相似文献   

8.
针对协同自适应巡航控制(CACC)车辆市场普及过程中存在的CACC车辆、自适应巡航控制(ACC)车辆与人工驾驶汽车混合行驶的异质交通流,应用智能驾驶模型(IDM)和由加州大学伯克利分校PATH实验室实车验证的ACC模型、CACC模型分别作为人工车辆、ACC车辆和CACC车辆的跟驰模型,建立能够反映异质交通流中3种车型相互关系的解析表达。基于此,推导不同CACC车辆渗漏率p下的异质交通流基本图模型,并针对异质交通流基本图散点分布与基本路段通行能力,设计数值仿真试验。最后,针对ACC车辆和CACC车辆的期望车间时距进行参数敏感性分析。研究结果表明:建立的异质交通流解析表达与随机性仿真试验的误差小于1.5%,异质交通流基本图解析可取代基本路段通行能力的仿真试验,用于分析不同p时的异质交通流通行能力;ACC期望车间时距ta取值1.1 s时,交通流通行能力随着p的增加逐渐提升;当t_a=1.6 s,p低于30%时,异质交通流通行能力与传统人工车辆通行能力基本相当;当t_a=2.2 s,p低于40%时,异质交通流通行能力低于人工车辆通行能力;同时,CACC车辆期望车间时距tc越小,异质交通流通行能力越大;建立的异质交通流解析表达可为异质交通流其他特性的解析研究提供思路,异质交通流基本图解析结果,从通行能力的角度为ACC,CACC上层控制器设计提供期望车间时距取值的参考。  相似文献   

9.
Modeling and Co-simulation of Adaptive Cruise Control System   总被引:2,自引:0,他引:2  
采用Carsim与Simulink建立了一种车辆纵向动力学模型;然后基于最优控制和PID控制,设计了具有上、下两层结构的自适应巡航控制系统;最后对典型的自适应巡航工况进行联合仿真.结果表明,所设计的自适应巡航控制系统能使自车在保持一定车距的前提下较好地跟踪前车速度变化,并对前车的紧急制动有较好的响应.  相似文献   

10.
为改善车辆编队行驶的稳定性、安全性和舒适性,本文中基于车车通信构建了多车协同编队控制系统。该系统采用了基于非线性车距控制的驾驶行为决策模型,并充分考虑了实际通信延时对系统的影响。针对车辆编队控制的稳定性,分析了各控制器参数的约束边界及其变化对系统稳定性的综合影响。最后搭建Matlab/Simulink模型,并进行仿真,以验证头车持续扰动、紧急制动和非零初始状态3种典型工况下多车协同控制的有效性与合理性。结果表明,本文设计的车辆编队控制系统可实现车辆编队的稳定性控制,保障行驶安全性,同时避免车辆频繁加速、制动的现象,在一定程度上提高了行驶舒适性。  相似文献   

11.
在ADAS的控制算法中,普遍的控制算法只能在本车道跟车,据此提出一种新方法,不仅能使车辆在本车道内跟车,还能在本车道无车的情况下,进行跨车道跟车。首先在考虑前后车辆制动距离的情况下,对车距算法进行了优化,并把其他车道的车辆通过算法投影至本车道;其次搭建了基于模型预测控制(MPC)算法的车辆离散化模型系统,对其控制参数施加约束;最后通过设置前车不同的车速和车况,在CarSim搭建车辆模型并与Matlab/Simulink联合仿真,针对车辆的纵向加速度变化的研究。  相似文献   

12.
选取车辆当前位姿和参考位姿来构造车辆的动态位姿误差,建立车辆路径跟踪闭环控制系统的Simulink仿真模型,并设计了模糊自适应PID控制器,利用模糊推理的方法,对PID控制器的参数进行自动调整。利用常规PID和模糊自适应PID控制算法分别进行仿真实验。仿真结果表明,模糊自适应PID改善了控制器的动态性能且具有较好的自适应能力。  相似文献   

13.
本文在分析了汽车制动过程中各部分运动和受力情况的基础上,运用Matlab/Simulink软件建立了车辆制动模型.采用基于滑移率的控制方法,用PID控制算法对单轮车辆模型进行仿真,并对仿真曲线进行分析,ABS的防抱死效果显著.  相似文献   

14.
车辆减速策略与跟驰车距具有相互制约的关系.分析了车辆减速运动规律,提出反映人们期望和行为特点的基于双曲函数的车辆减速策略,进而建立计算安全跟驰车距的数学模型,并按照国际载运工具和我国上海磁浮列车的运行舒适性评价标准,对200 km/h跟驰速度条件下安全车距的计算式进行了仿真试验与数值分析,验证了相关数学模型与计算方法的有效性.  相似文献   

15.
基于Matlab/Simulink的车辆制动过程分析   总被引:1,自引:0,他引:1  
结合车辆制动时的数学模型,利用Matlab/Simulink仿真软件,建立了车辆制动过程的运动模型,并通过对仿真后的输出结果进行分析、比较,阐述了防抱死制动系统(ABS)对汽车制动性以及制动时的方向稳定性的影响.  相似文献   

16.
为降低高速公路弯坡组合路段载重车追尾碰撞风险,通过研究不同平纵组合下高速公路弯坡类型,界定弯坡组合路段参数范围,选取具有较强代表性的车型,针对现有最小安全车距模型的缺陷,建立基于载重车制动减速系统且满足驾驶人驾驶行为特性的弯坡组合路段安全车距计算模型并对其参数进行标定;利用载重车仿真软件TruckSim 2016建立弯坡段双车跟驰模型,分析小半径平曲线下载重车爬坡与下坡行车状态时车辆滑移率、行驶速度、车间距等指标,验证该最小安全车距模型的有效性。  相似文献   

17.
文章分析了智能驾驶车辆纵、横向运动特性,作出合理假设,并建立纵横向车辆动力学模型。分别设定车辆纵、横向运动的期望轨迹,基于线性二次型调节器(LQR)方法控制车辆横向运动,运用比例-积分-微分(PID)控制器调节车辆纵向运动。结合Carsim软件建立车辆运动模型,并在Matlab/Simulink中分别建立车辆纵、横向控制算法。仿真分析表明,车辆纵、横向运动控制算法具有良好的控制效果,使得仿真车辆很好地跟踪了期望运动轨迹。  相似文献   

18.
文章设计了基于滑膜变结构控制的车距智能保持系统,通过对系统架构的模块化拆分,将车距保持系统分为上层滑膜控制系统和下层前馈-反馈控制系统进行分别开发。通过在Carsim~?中搭建实车仿真环境,并与Simulink联合仿真,验证了全速自适应车距保持系统控制律,仿真结果表明滑膜控制算法可以在多种工况下稳定并且准确地实现驾驶员的跟踪目标。  相似文献   

19.
为提高车辆自动驾驶系统的运动性能,基于模糊逻辑和滑模控制理论设计了一种车辆纵向和横向运动综合控制系统。该控制系统通过对前轮转向角度、发动机节气门开度、制动液压及主动横摆力矩进行协调控制,使车辆能够以期望速度在理想道路轨迹上行驶,并提高车辆在行驶过程中的操纵稳定性。仿真结果表明:纵向和横向运动综合控制系统能够提高车辆在不同行驶工况下的跟踪性能和运动性能,在车辆自动驾驶过程中是有效的。  相似文献   

20.
1种基于车辆时空图的车辆异常行为检测方法   总被引:2,自引:0,他引:2  
对快速路车辆异常行为的检测有助于防止或及时处理交通事故,缓解交通拥堵,保障出行的安全和效率。采用多高斯背景模型提取前景运动车辆及其中心点并利用Kalman滤波算法跟踪运动车辆。在此基础上,得到各个车道上车辆的行驶时空图,通过车辆时空图对车辆行为进行轨迹分析,根据时间序列上车辆位置的变化检测车辆逆行,通过车间距和车辆位置状态信息检测车辆碰撞。实验表明,该方法能较好地识别出车辆异常行为。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号