共查询到20条相似文献,搜索用时 0 毫秒
1.
依据国际标准ISO2631、IS010326-2和国家汽车标准QC/T55的相关内容,以两辆垃圾车为研究对象,将垃圾车座椅处的振动加速度均方根值与人对垃圾车振动舒适性的主观感觉联系起来,对驾驶员全身振动进行了测量分析. 相似文献
2.
3.
R. G. Langlois R. J. Anderson 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》1995,24(1):65-97
The potential performance improvement using preview control for active vehicle suspension was first recognized in the late nineteen sixties. All work done since that time has been based on optimal control theory using simple vehicle models.
In this article, the performance of quarter vehicle preview controllers when applied to a real off-road vehicle is simulated using both two degree of freedom quarter and ten degree of freedom full vehicle models. The results, which are compared with non-preview active and conventional passive suspensions, confirm that preview control reduces vertical acceleration of the body centre of gravity, which results in improved ride quality. Further, reductions in pitch and roll motion result from smaller vertical displacements of the vehicle quarters. Coupling between quarters, through the vehicle body, appears to have a smoothing effect on the control.
As an alternative to optimal control theory based controllers, a simple ad hoc preview controller based on isolating the vehicle body from dynamic loads transmitted through the suspension is proposed. Simulation results show that such a controller outperforms the optimal control theory based controllers over small discrete disturbances but responds poorly to disturbances encountered from other than steady state. 相似文献
In this article, the performance of quarter vehicle preview controllers when applied to a real off-road vehicle is simulated using both two degree of freedom quarter and ten degree of freedom full vehicle models. The results, which are compared with non-preview active and conventional passive suspensions, confirm that preview control reduces vertical acceleration of the body centre of gravity, which results in improved ride quality. Further, reductions in pitch and roll motion result from smaller vertical displacements of the vehicle quarters. Coupling between quarters, through the vehicle body, appears to have a smoothing effect on the control.
As an alternative to optimal control theory based controllers, a simple ad hoc preview controller based on isolating the vehicle body from dynamic loads transmitted through the suspension is proposed. Simulation results show that such a controller outperforms the optimal control theory based controllers over small discrete disturbances but responds poorly to disturbances encountered from other than steady state. 相似文献
4.
5.
Reza Kashani Joseph E. Strelow 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》1999,32(4):409-420
For off-road vehicles, minimizing the absorbed power is the main objective of suspension control. The primary cause of increase in the absorbed power in off-road vehicles driven at high speeds on harsh courses is the exhaustion of the suspension travel. Fuzzy-logic approach to active and semi-active off-road vehicle suspension control, with the goal of improving the speed of the vehicle over rough terrains are developed. The ride metric used for quantifying improvements is the absorbed power of the sprung mass. Particular attention is paid to the proper modeling of the suspension using both the full kinematic constraints and the more convenient two degree of freedom linear model of the quarter vehicle suspension. The nonlinearities due to the kinematic constraints on motion are accounted for by modifying the stiffness and damping coefficients of the suspension spring and dashpot in the linear model. The control laws are developed using the less complex model and demonstrated in the fully constrained environment. Nonlinearities of the suspension, including tire stiffness/damping and bumpstops are included at all stages of controller development. 相似文献
6.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(4-5):409-420
For off-road vehicles, minimizing the absorbed power is the main objective of suspension control. The primary cause of increase in the absorbed power in off-road vehicles driven at high speeds on harsh courses is the exhaustion of the suspension travel. Fuzzy-logic approach to active and semi-active off-road vehicle suspension control, with the goal of improving the speed of the vehicle over rough terrains are developed. The ride metric used for quantifying improvements is the absorbed power of the sprung mass. Particular attention is paid to the proper modeling of the suspension using both the full kinematic constraints and the more convenient two degree of freedom linear model of the quarter vehicle suspension. The nonlinearities due to the kinematic constraints on motion are accounted for by modifying the stiffness and damping coefficients of the suspension spring and dashpot in the linear model. The control laws are developed using the less complex model and demonstrated in the fully constrained environment. Nonlinearities of the suspension, including tire stiffness/damping and bumpstops are included at all stages of controller development. 相似文献
7.
8.
R.C. Lin Graduate Student D. Cebon Lecturer D.J. Cole Royal Society University Research Fellow 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》1996,26(1):17-43
This paper describes an investigation into active roll control of articulated vehicles. The objective is to minimise lateral load transfer using anti-roll bars incorporating low bandwidth hydraulic actuators. Results from handling tests performed on an articulated vehicle are used to validate a nonlinear yaw/roll model of the vehicle. The methodology used to design lateral acceleration controllers for vehicles equipped with active anti-roll bars is developed using a simplified linear articulated vehicle model. The hardware limitations and power consumption requirements of the active elements are studied. The controller is then implemented in the validated articulated vehicle model to evaluate the performance of an articulated lorry with active anti-roll bars. The simulation results demonstrate the possibility of a significant improvement in transient roll performance of the vehicle, using a relatively low power system (10 kW), with low bandwidth actuators (5 Hz). 相似文献
9.
针对轮毂电机分布式驱动越野车辆在狭小空间快速机动的需求,设计了一种分层结构的原地转向控制策略。基于动力学原理分析了各轮载荷、附着条件对原地转向横摆速度的影响机理,并搭建原地转向运动学模型,上层采用模型预测控制算法设计原地转向理想轨迹以及期望的横摆角速度,开发基于PI滑模控制的横摆运动跟踪算法,通过补偿转向横摆力矩以提高方向角控制的鲁棒性和稳定性,下层以最优轮胎利用率为目标,设计二次规划算法优化分配各轮附加横摆力矩。dSPACE硬件在环测试结果表明,所提出的控制算法可在保证稳定性的前提下实现原地转向,大幅提高了车辆的转向机动性,在方向盘动态输入仿真中,车辆最大转弯半径为0.157 m,转向中心的最大偏移量为3.610 m;同时,驾驶员能对转向过程进行闭环控制,实现了原地转向过程中横摆速度的实时调节。 相似文献
10.
Sang-Gyun So Dean Karnopp 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》1997,27(1):19-36
Small, narrow commuter vehicles have attracted considerable interest in recent years as a means to increase the utilization of existing freeways and parking facilities. However, conventional narrow track vehicles are likely to have reduced stability against overturning during hard cornering. A possible solution to this problem lies in vehicles which tilt toward the inside of a turn. Two different ways to achieve this tilt will be analyzed. For direct tilt control (DTC) an actuator forces the upper part of the vehicle to tilt. Steering tilt control (STC) uses steering to control the tilt as is done by motorcycle or bicycle riders. At low speeds, only the DTC system is effective while at high speeds the STC offers less lateral acceleration for the passenger during transient cornering and may seem more natural. The two methods of control will be studied separately and it will be shown that even though the same steady state tilt can be achieved with either system, the transient behavior of the systems is very different. It also will be shown that it is possible to switch from one system to the other at an arbitrarily chosen speed with virtually no transient effects even when the vehicle is not in a steady state. Regardless of which control system is active, the driver simply communicates his desire to follow the road by moving the steering wheel and the control systems take care of the tilting either by using the tilt actuator or by actively steering the road wheels. Thus the driver does not need to leam how to stabilize the tilt mode of the vehicle. 相似文献
11.
Antony Snell 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》1998,29(5):277-307
An automatic tilt control strategy for a narrow commuter vehicle is described. Such a vehicle would be enclosed like a conventional car but would bank into turns like a motorcycle and so it would feel quite unconventional to drive. The proposed tilt control system uses the steering to tilt the car over like a motorcycle but this is augmented by actively generating a rolling moment about the pivot axis between the tilting upper body and non-tilting base. The provision of this active direct tilt control enables the vehicle to remain upright at low or zero speed and also permits the designer to fine tune the transient roll response. Although it appears complex the proposed tilting control relies on only a few simple sensor measurements, some modest, microprocessor based signal processing and low power, low bandwidth steering and tilt control actuators which might be derived from existing automotive components. 相似文献
12.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(5):277-307
SUMMARY An automatic tilt control strategy for a narrow commuter vehicle is described. Such a vehicle would be enclosed like a conventional car but would bank into turns like a motorcycle and so it would feel quite unconventional to drive. The proposed tilt control system uses the steering to tilt the car over like a motorcycle but this is augmented by actively generating a rolling moment about the pivot axis between the tilting upper body and non-tilting base. The provision of this active direct tilt control enables the vehicle to remain upright at low or zero speed and also permits the designer to fine tune the transient roll response. Although it appears complex the proposed tilting control relies on only a few simple sensor measurements, some modest, microprocessor based signal processing and low power, low bandwidth steering and tilt control actuators which might be derived from existing automotive components. 相似文献
13.
为了提高汽车的操纵稳定性和行驶稳定性,分别对主动转向及直接横摆力矩控制进行了研究。根据汽车线性二自由度模型获得汽车稳态工况下的期望横摆角速度和期望质心侧偏角,设计了上层控制器和下层控制器,其中上层控制器为主动转向与直接横摆力矩功能分配的协调控制,下层控制器采用单神经元自适应PID算法设计了主动转向控制器和直接横摆力矩控制器。基于汽车行驶稳定性指标设计了调度参数,以实现主动转向和直接横摆力矩的协调控制。分别选取高附着系数路面和低附着系数路面进行了正弦输入试验和阶跃输入试验,结果表明所设计的控制系统能够很好地提高线控转向汽车的操纵稳定性和行驶稳定性。 相似文献
14.
I. Ballo 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》1995,24(9):683-691
The paper deals with the theoretical estimation of the minimal power requirement, necessary for the operation of the active vibration control system (AVCS), connected with a passive one. It is assumed this compound system is used for the vibration control purposes in the heavy vehicle driver's seats. The systems considered in the paper are of two kinds. In the first case the electro-hydraulic actuator of the AVCS is situated in series to the spring-damper combination of the seat suspension. The second system under consideration is formed by parallel connection of electro-pneumatic actuator and the spring-damper combination of the seat suspension, which is a mechanical model of a real air spring with controlled in-flow and out-flow of the air. The comparison of results for both compound systems shows markedly higher power consumption of the serial system. The theoretical results are in acceptable agreement with the experimental data. 相似文献
15.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(9):683-691
SUMMARY The paper deals with the theoretical estimation of the minimal power requirement, necessary for the operation of the active vibration control system (AVCS), connected with a passive one. It is assumed this compound system is used for the vibration control purposes in the heavy vehicle driver's seats. The systems considered in the paper are of two kinds. In the first case the electro-hydraulic actuator of the AVCS is situated in series to the spring-damper combination of the seat suspension. The second system under consideration is formed by parallel connection of electro-pneumatic actuator and the spring-damper combination of the seat suspension, which is a mechanical model of a real air spring with controlled in-flow and out-flow of the air. The comparison of results for both compound systems shows markedly higher power consumption of the serial system. The theoretical results are in acceptable agreement with the experimental data. 相似文献
16.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(5):353-363
Summary Terrain surfaces have to be modeled in very detail and wheel-surface contacting geometry must be well defined in order to obtain proper ground-reaction and friction forces for realistic simulation of off-road vehicles. Delaunay triangulation is one of the most widely used methods in modeling 3-dimensional terrain surfaces, and the T-search is a relevant algorithm for searching resulting triangular polygons. The T-search method searches polygons in a successive order and may not allow real-time computation of off-road vehicle dynamics if the terrain is modeled with many polygons, depending on the computer performance used in the simulation. In order to accelerate the searching speed of the T-search, a terrain database of triangular polygons is modeled in multi-levels by adopting the LOD (Level of Detail) method used in real-time computer graphics. Simulation results show that the new LOD-search is effective in shortening the required computing time. The LOD-search can be even further accelerated by introducing the NN (Neural Network) algorithm, in the cases where a appropriate range of moving paths can be predicted by cultural or geographical or empirical information of the simulated terrain, such as lakes, houses, etc. Numerical tests show that LOD-NN search almost doubles the speed of the original T-search. 相似文献
17.
Sugjoon Yoon 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2003,39(5):353-363
Summary Terrain surfaces have to be modeled in very detail and wheel-surface contacting geometry must be well defined in order to obtain proper ground-reaction and friction forces for realistic simulation of off-road vehicles. Delaunay triangulation is one of the most widely used methods in modeling 3-dimensional terrain surfaces, and the T-search is a relevant algorithm for searching resulting triangular polygons. The T-search method searches polygons in a successive order and may not allow real-time computation of off-road vehicle dynamics if the terrain is modeled with many polygons, depending on the computer performance used in the simulation. In order to accelerate the searching speed of the T-search, a terrain database of triangular polygons is modeled in multi-levels by adopting the LOD (Level of Detail) method used in real-time computer graphics. Simulation results show that the new LOD-search is effective in shortening the required computing time. The LOD-search can be even further accelerated by introducing the NN (Neural Network) algorithm, in the cases where a appropriate range of moving paths can be predicted by cultural or geographical or empirical information of the simulated terrain, such as lakes, houses, etc. Numerical tests show that LOD-NN search almost doubles the speed of the original T-search. 相似文献
18.
电动轮驱动车辆的驱动主动控制技术是电动车领域一项富有特色的关键技术,文章在综合了大量文献的基础上,分析了电动轮驱动技术的特点,重点对电动轮驱动的主动控制技术中的电子差速技术、驱动防滑技术、动力学控制及参数估算的研究现状和存在的问题进行了分析,最后结合问题提出了未来的研究方向. 相似文献
19.
Active Roll Control of Single Unit Heavy Road Vehicles 总被引:5,自引:0,他引:5
David J. M. Sampson David Cebon 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2003,40(4):229-270
Summary Strategies are investigated for controlling active anti-roll systems in single unit heavy road vehicles, so as to maximise roll stability. The achievable roll stability improvements that can be obtained by applying active anti-roll torques to truck suspensions are discussed. Active roll control strategies are developed, based on linear quadratic controllers. It is shown that an effective controller can be designed using the LQG approach, combined with the loop transfer recovery method to ensure adequate stability margins. A roll controller is designed for a torsionally flexible single unit vehicle, and the vehicle response to steady-state and transient cornering manoeuvres is simulated. It is concluded that roll stability can be improved by between 26% and 46% depending on the manoeuvre. Handling stability is also improved significantly. 相似文献
20.
Naohiro Yuhara Jun Tajima 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2001,36(2):119-158
This paper proposes an advanced steering system that adaptively varies the static gain and dynamics of the steering system. The steering system gain is adjusted, depending on whether the driver is in an aggressive or leisurely driving mood. The steering system dynamics is so designed that the command mode of the steering system will be either a rate-command or an attitude-command according to the lateral control task performed by the driver. The recognition system for lateral control tasks, a lane-following or lane-change task is proposed. The findings of simulator tests indicate proposed advanced steering system would remarkably improve the vehicle handling qualities. 相似文献