首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
为研究软黏土在长期列车振动荷载下的动力响应特征及变形规律,以天津地铁6号线左江道站—梅江风景区站区间为研究背景,采用土体循环移动弹塑性本构模型,选取合理的列车荷载,建立三维有限元模型,揭示隧道周围软黏土的加速度响应和位移响应,并结合实测数据分析隧道周围峰值加速度的衰减规律.研究表明:在隧道径向上平均峰值加速度呈非线性迅...  相似文献   

2.
为了探明列车荷载对黏土与粉土复合地层及其中地铁隧道的长期影响,以无锡某地铁区段为研究对象,建立了轨道-隧道-地层系统的耦合2.5维数值模型,分析了运行列车诱发地铁隧道下覆黏土及粉土复合地层的动应力响应规律,进而结合循环荷载作用下黏土及粉土的不排水累积变形特征及孔压累积特征,采用分层总和法研究了列车振动荷载长期作用诱发该复合地层及其中地铁隧道的长期沉降量值及发展规律. 研究结果表明:1) 隧道下覆地基土的动偏应力沿深度方向呈先增大后减小的变化趋势,其最大值出现在隧道下覆约1.3 m深度处,可达2.80 kPa;2) 地铁列车运行导致复合地层中隧道结构的沉降主要发生在地铁列车前20万次运行期内,且隧道结构的沉降在此期间发展得较为迅速;3) 复合地层中隧道结构稳定后的车致沉降量值可达13.44 mm,其中由土体不排水累积塑性应变引起的沉降为11.40 mm,占比85%,由累积孔压消散引起的固结沉降为2.04 mm,占比15%;4) 隧道下覆黏土与粉土复合地层长期变形主要发生在隧道下方15 m范围内,该范围内的土体沉降对隧道结构长期沉降量值的贡献占比达90%.   相似文献   

3.
柔性接头地铁隧道穿越地裂缝的地震响应   总被引:1,自引:0,他引:1  
采用振动台模型试验, 模拟地震荷载和地裂缝场地沉降, 分析了穿越地裂缝区域且设置柔性接头的分段地铁隧道的动力响应, 研究了地裂缝场地沉降、裂缝发育特征、地铁隧道加速度响应特征、土压力与隧道各区段不同部位的应变规律。分析结果表明: 由地裂缝场地沉降与地震荷载耦合作用所产生的差异沉降和裂缝多集中于柔性接头部位; 各区段地铁隧道间的运动具有一定独立性, 上盘靠近地裂缝的地铁隧道的加速度峰值是下盘隧道的3.2倍; 距离地裂缝越近土压力越大, 且在耦合荷载作用下, 上盘土压力是下盘土压力的6.7倍; 地铁隧道各区段左右拱腰应变较大, 底板处应变次之, 拱顶部位应变较小; 柔性接头设置后各区段应变增率减小, 在距离地裂缝较近部位未出现明显的应变增加现象。可见, 在地震荷载与地裂缝场地沉降耦合作用下, 柔性接头能够减小地铁隧道地裂缝位置处的集中应力与地裂缝场地的变形。  相似文献   

4.
针对岩土工程中常用二维模型等效三维模型进行数值计算的方法,对列车运行引起的二维和三维动力响应进行了分析.根据钢轨-扣件-隧道-地基纵向模型得到作用于隧道道床上的振动荷载,基于循环流动本构模型和土-水完全耦合理论,计算了列车平均时速下饱和软土层二维和三维的振动响应规律.研究结果表明:两种模型的地表振动加速度、位移以及隧道周围超孔隙水压力在横截面内规律基本相似但数值相差较大;二维-三维地表加速度比和位移比最大值分别可达9倍和6倍,加速度振级相差可达15 d B;隧道周围的二维-三维超孔压比在1.5~3.5之间,单次振动超孔压累积值可达4.36 k Pa和1.69 k Pa,且在隧道竖轴左右45°及135°位置处超孔压力累积最为明显;振动荷载形式、纵向土层振动、固结速度是造成饱和土软土二维-三维列车振动响应差异的主要原因.  相似文献   

5.
以上海某越江盾构隧道为例,采用二维动力有限元模拟的方法,分析了地震荷载作用下盾构隧道的动力响应,得到了在7度地震作用下,地表土体、隧道周围土体的动剪应力比、动孔压比以及水平方向的加速度.除此之外还得到地震荷载作用下隧道结构、轨道梁的动剪应力,得出了一些具有实际意义的结论,为以后的盾构隧道的设计和施工提供参考.  相似文献   

6.
以深圳地铁某隧道工程为依托,研究了冲孔施工影响下盾构隧道的损伤变形规律。首先,对冲孔施工的振动特性进行分析,并深入探讨了冲击荷载对盾构隧道的影响作用机理;然后,根据非线性动力有限元分析原理,研究得到了冲孔条件下盾构隧道力学响应分析方法与实现步骤,并应用于实例分析。结果显示:冲孔产生的挤土效应创造了盾构管片损伤的客观条件;管片最大拉应力与管体周边超孔隙水压力之间存在一定关联性,孔隙水压力场的剧烈变化是导致管片损伤的重要原因;实例分析结果与管片实际开裂情况较为符合,本文分析方法具有一定可行性和正确性。  相似文献   

7.
彭波 《北方交通》2022,(2):80-84
针对大断面双层隧道结构力学复杂的特点,为了掌握其在运营期车辆荷载作用下的响应规律,对建立的三维隧道模型进行研究.对不同时刻的位移云图、位移进程曲线、加速度时程曲线进行分析,分析结果表明:在车辆荷载作用下,位移变化由大到小依次为车道、衬砌、围岩;位移响应在达到峰值后开始衰减直到荷载作用周期结束,并产生位移残余;加速度响应随着隧道轴线方向距离的增加而不断衰减,仅在出口段有所增加.通过车载作用下超大断面双层隧道的模拟,研究其衬砌结构的动力响应规律,可为运营期衬砌结构健康监控提供参考.  相似文献   

8.
采用对隧道洞室周边及开挖面的土体施加由盾构机引起的各种荷载的方法模拟盾构施工,通过变化注浆压力及推进力研究盾构施工对周边土体及单桩基础的影响.增加注浆压力是减小盾构推进对周围土体影响的最有效的措施.当注浆压力足够大,推进力、盾尾脱离及浆液硬化对土体的影响程度相同.若使隧道顶点的沉降及隧道底部土体的回弹减小相同的数量,底部注浆孔的压力要大于顶部注浆孔的压力.当推进力大于临界值时,推进力对隧道周边土体的影响明显增加.隧道周边及地表处各点的位移变化主要发生在盾构机通过这些点所在位置时,衬砌生成后,随后的开挖步对其影响很小.桩侧隧道洞室衬砌生成后,随后开挖步施加的注浆压力可以明显减小桩顶沉降,注浆压力越大,桩顶最终沉降越小.推进力对桩顶沉降影响不明显.盾构施工引起的桩顶和桩底的沉降始终相同,即桩整体下沉.桩顶无荷载及桩顶施加工作荷载时,开挖引起的桩顶沉降相同;桩顶施加极限荷载时,开挖引起的桩顶沉降明显增加.  相似文献   

9.
为研究饱和软黏土路基条件下布袋注浆桩的挤土效应,以布袋注浆桩加固某饱和软黏土路基工程为例,通过现场试验对桩体成型过程中的桩周土体位移和超静孔隙水压力进行了分析. 运用测斜管监测了成桩时桩周土体的水平位移,得到了土体位移的分布特征和土体位移随注浆压力与时间的变化规律;运用孔压计监测了成桩时桩周土体中超静孔隙水压力,得到了超静孔隙水压力的分布规律与变化趋势. 试验结果表明:成桩后,桩周土体水平位移呈现“马鞍形”分布,在距离地表0.1~0.3倍和0.8~1.0倍的桩长位置处出现最大位移;桩体成型挤土产生水平位移的范围约为桩径的6倍;桩体养护成型后,标准施工下的注浆压力对挤土效应的影响甚微,同时桩周土体水平位移会出现明显回弹,回弹位移值为注浆当天的40%~60%;超静孔隙水压力在前10 d消散较快,超静孔隙水压比随土体与桩体间距离的增加而呈现近似于线性规律的衰减,其影响范围约为10倍桩径.   相似文献   

10.
随着现代城市的快速发展,交通问题日益严重,地铁逐渐成为缓解交通压力的最主要手段。在城市环境中修建地铁,由于受城市空间的制约,地下隧道往往不得不从一些既有建筑物附近穿过。为了保证隧道施工安全,有效预测隧道周边塑性区显得尤为重要。应用Verruijt&Booker解和山口升解对自由地层中隧道开挖产生的塑性区进行了计算。然而,与自由地层相比,承载地层情况下隧道开挖产生的塑性区不可避免的受到基础荷载的影响。针对箱基荷载特点,在假设地层为理想弹塑性体的前提下引入Mindlin解,得出了箱基荷载作用下隧道开挖产生的塑性区边界方程,并通过Matlab软件对解析解进行了分析,分析表明:(1)在箱基荷载作用下,当使用Verruijt&Booker解时,隧道周边塑性区较自由地层在邻近荷载一侧上部增大,下部减小,远离荷载一侧上部减小,下部增大;(2)对于山口升解情况,隧道周边塑性区较自由地层在邻近荷载一侧上部减小,下部增大,远离荷载一侧上部增大,下部减小,变化规律与Verruijt&Booker解情况正好相反;(3)无论Verruijt&Booker解还是山口升解,隧道周边塑性区的影响程度都随荷载与隧道水平距离的增大而减小。  相似文献   

11.
超浅埋隧道工程施工中除保证自身施工稳定性外,也需要严格控制隧道周边土体与路基的沉降变形,基于以上问题,现以厦门某超浅埋软岩大断面隧道开挖工程为背景,通过理论分析、数值模拟以及模型试验等手段,对不同埋深下的路基以及洞室变形规律进行分析研究,并在此基础上提出了相应的控制措施.研究结果表明:1)超浅埋大断面隧道开挖,埋深对隧道围岩以及地面变形的影响较大,开挖时为保证隧道稳定性以及降低对地面的影响,埋深应尽量增大,同时注意支护的合理性与及时性.2)超浅埋大断面开挖过程中,埋深与隧道周边围岩的变形成正比,但不影响其分布状态;由于路基的相对稳定性,路基下拱顶的应力与形变变化率均较大,容易造成坍塌;且隧道开挖过程中,拱脚处变形与应力均较大,容易造成围岩破碎,需要加强支护.3)开挖过程中,随埋深增加,地面以及路基变形逐渐较小;与周边土体表面相比,路基的地面沉降相对较小,但影响范围相对较大,产生较大面积的不均匀沉降,破坏路基整体性,需要加强路基地面不均匀沉降的监测.  相似文献   

12.
为精确计算列车动荷载作用下软土地铁盾构隧道频域振动响应,考虑地基动刚度随应变频响的非线性变化,建立了车辆/轨道/隧道/软土地基的垂向耦合动力学模型,研究了不同轨道平顺等级下软土动刚度随应变频响非线性变化对地铁盾构隧道随机振动的影响规律.研究结果表明:随着轨道平顺性的恶化,地基动刚度随应变频响非线性的变化将引起地铁盾构隧道各频段内的振动加速度级出现明显的非均匀变化;轨道不平顺恶化后,软土地基动刚度的非线性将改变地铁盾构隧道频域振动幅值大小,且其对应频率会出现约有0.2 Hz的偏移,致使地铁盾构隧道频域振动能量出现重分布现象.   相似文献   

13.
降雨入渗时沥青路面流固耦合作用的力学响应   总被引:1,自引:0,他引:1  
应用ABAQUS软件建立降雨入渗条件下的沥青路面渗流有限元模型,得到相应的渗流规律和渗流场的分布状态;在建立合理的降雨渗流场边界的基础上,运用多孔介质流固耦合理论分析了沥青路面在渗水和行车荷载作用下的力学响应。研究表明:降雨入渗过程将会导致沥青路面内部饱和度和孔隙水压力出现显著的变化;在动态荷载的作用下,降雨入渗后的沥青路面内部各项应力指标呈现波动特性,孔隙水压力与流速出现了较大的正、负逆转。  相似文献   

14.
列车荷载是揭示路基真实动力响应特性的前提,以往的动三轴试验将列车荷载视为连续动荷载,忽略了追踪列车间隔时间对路基土体动力特性的影响. 利用室内动三轴仪对粉土开展了连续加载和间歇加载(连续加载与间歇交替循环)的动三轴试验,分析了两种加载方式下粉土超孔隙水压力、回弹模量、累积塑性应变等的发展规律. 研究结果表明:持续动荷载作用下累积的超孔隙水压力在间歇阶段会发生消散,轴向应变在间歇阶段得到一定程度恢复,进而提高了试样抵抗变形的能力;室内动三轴试验忽略间歇效应将高估列车动荷载作用下试样超孔压和塑性应变的累积量及发生破坏的可能性;间歇加载下试样的永久变形行为可依据安定理论划分为塑性安定、塑性蠕变和增量破坏.   相似文献   

15.
为研究盾构隧道施工对富水软弱底层的扰动影响,以大连地铁某标段盾构隧道施工为例,首先基于修正剑桥模型建立土体本构关系,利用Shell结构单元模拟盾构初衬;然后采用流固耦合方法研究土体固结过程对盾构开挖引起软弱地层扰动问题;最后根据仿真结果与现场实测数据,绘制地表沉降对比分析曲线,给出盾构施工引起地表沉降的动态变化趋势.结果表明:孔隙水在盾构开挖完成后仍持续向隧道方向渗透,并引起距隧道较近区域的扰动趋势大于周围较远区域.本研究对提高富水软弱地层条件下盾构施工过程建模的准确性和实效性、指导盾构施工具有指导作用.  相似文献   

16.
在富水软弱地层中,如何预测及控制地层扰动引起的长期固结沉降一直是盾构隧道施工面临的重要问题之一。基于FEM-FDM水土完全耦合理论,利用同济曙光三维有限元软件,分析了珠海某隧道软土区段局部加固对盾构施工引起的土体工后长期固结沉降的影响规律。数值计算结果表明:地层及隧道拱顶长期沉降槽随埋深增大逐渐变深变窄;盾构隧道基底加固分别使地表及隧道拱顶的最大沉降量减小34.2%和27%,且使二者更快趋于稳定,但对隧道结构变形的影响并不明显;加固会使隧道竖向应力有所增大,但不会改变其沿隧道轴向的分布规律;有基底加固时隧道拱腰处的超孔隙水压力消散更快,使得固结沉降更快趋于稳定。  相似文献   

17.
为研究软基路堤在固结过程中的节点位移、单元应力~应变和超孔隙压力变化规律,采用二维比奥固结理论,分三级加载。结果表明软土固结主要是由于受荷使土体中产生超孔隙压力,超孔隙压力使软基中的水体不断向低压力的区域渗透而排出地基,因此,软基路堤沉降变形与超孔隙压力的分布和消散方式密切相关。  相似文献   

18.
按平面应变问题分析隧道地表沉降,不考虑重力场的影响作用,而仅认为其是由洞周土体应力释放引起的。在假定隧道周边土体应力释放荷载为均布的前提下,由实际的地表应力为0与圣维南原理可知无穷远处的侧边与底边应力也为0。从而可利用平面弹性力学关于无限大板的理论求出其应力,并将其应力与未开挖前仅受重力场作用下的应力叠加。由此分析拱顶土体的塑性区半径,如果其塑性区半径不大且在工程允许的误差范围内.可以认为隧道开挖后整个土体仍处于弹性状态,从而利用洞周受均布荷栽作用下弹性无限大板的位移解直接推求出地表的沉降方程。  相似文献   

19.
饱和软粘土地基沉桩过程中桩土挤压所引起的桩周土体超孔隙水压力效应是非常显著的 .本文从弹塑性理论出发推导出沉桩过程中桩周土体挤压应力及超孔隙水压力的计算公式 ,给出了考虑挤压应力和超孔隙水压力等影响因素的合理打桩间距的确定方法  相似文献   

20.
将地震作用下土体的反应看作是随机过程,结合可靠性分析理论,在考虑了地震荷载作用期间土体超孔隙水压力产生及消散所引起再固结变形的基础上,建立了一个基于累积损伤模型的土体反应分析方法,对上海地区典型的软土地层进行了计算分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号