首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The street-network efficiency of tens of British cities in relation to transport fuel consumption and CO2 emissions are analyzed. The results show a strong linear positive correlation between length entropy and average street length, and a negative correlation between entropy and street density. Also, the results suggest that in a large city the street network is used more efficiently than in a small city, as indicated by the sublinear relations between city size (population) and the number of streets, total length of streets, and the area covered by the street network. The sublinear relation means that these parameters grow more slowly than the city size. By contrast, because a larger fraction of the street network is used at close to full capacity during considerable part of the time in a large city than a small one, the fuel consumption and the CO2 emissions show a linear relation with city size and superlinear relation with total street length. The superlinear relation means that the CO2 emissions increase faster than the total street length, a measure of the network size. Thus, large cities may be less energy efficient and environmentally friendly than small cities. In every city the street network needs to interconnect all the buildings, which requires a certain minimum size. In a small city, however, the network is used to a low capacity most of the time so that its relations to fuel consumption and the CO2 emissions are more favorable than those in a large city.  相似文献   

2.
A tool for measuring the “completeness” of a complete street has applications in developing policy, prioritising areas for infrastructure investment for a network, and solving the right-of-way allocation problem for individual streets. A literature review was conducted on the state-of-art in the assessment complete street designs. Complete streets assessment requires a context-sensitive approach, thus context-sensitive standards of “completeness” must first be established by combining a street classification system with sets of priorities and target performance levels for the different types of streets. Performance standards should address a street’s fulfilment of the movement, environmental, and place functions, and be flexible enough to account for the many ways that these functions of a street can be fulfilled. Most frameworks reviewed are unsuitable for evaluating complete streets because, with few exceptions, they guide street design by specifying the design elements for inclusion on the street. Secondly, the performance of a street can be assessed according to transportation, environmental, and place criteria, and compared to the target performance levels specified by the street’s classification. As there are many different impacts to consider on a street, additional work is required to define the priorities and performance objectives for different types of streets.  相似文献   

3.
This paper focuses on computational model development for the probit‐based dynamic stochastic user optimal (P‐DSUO) traffic assignment problem. We first examine a general fixed‐point formulation for the P‐DSUO traffic assignment problem, and subsequently propose a computational model that can find an approximated solution of the interest problem. The computational model includes four components: a strategy to determine a set of the prevailing routes between each origin–destination pair, a method to estimate the covariance of perceived travel time for any two prevailing routes, a cell transmission model‐based traffic performance model to calculate the actual route travel time used by the probit‐based dynamic stochastic network loading procedure, and an iterative solution algorithm solving the customized fixed‐point model. The Ishikawa algorithm is proposed to solve the computational model. A comparison study is carried out to investigate the efficiency and accuracy of the proposed algorithm with the method of successive averages. Two numerical examples are used to assess the computational model and the algorithm proposed. Results show that Ishikawa algorithm has better accuracy for smaller network despite requiring longer computational time. Nevertheless, it could not converge for larger network. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
This paper considers a signalized street of uniform width and blocks of various lengths. Its signals are pretimed in an arbitrary pattern, and traffic on it behaves as per the kinematic-wave/variational theory with a triangular fundamental diagram. It is shown that the long run average flow on the street when the number of cars on the street (i.e. the street’s density) is held constant is given by the solution of a linear program (LP) with a finite number of variables and constraints. This defines a point on the street’s macroscopic fundamental diagram. For the homogeneous special case where the block lengths and signal timings are identical, all the LP constraints but one are redundant and the result has a closed form. In this case, the LP recipe matches and simplifies the so-called “method of cuts”. This establishes that the method of cuts is exact for homogeneous problems. However, in the more realistic inhomogeneous case the difference between the two methods can be arbitrarily large.The paper uses the LP method to obtain the macroscopic fundamental diagrams arising under four different traffic coordination schemes for streets with four different block length configurations. It is found that the best scheme depends on the prevailing density. Curiously, the popular scheme in which all the traffic green phases are started synchronously wins only in rare circumstances. Its performance is particularly underwhelming when the street’s blocks are long. The paper also presents density-aware numerical methods to optimize the signal offsets for 1-way and 2-way streets. For 1-way streets operated with a common cycle the method reduces to a simple graphical construction . In this case the resulting flow matches the flow that would arise if all of the street’s intersections except one with the shortest green phase had been eliminated.  相似文献   

5.
This paper presents a safety-based path finding methodology for older drivers and bicyclists in an urban area. The paths are estimated based on costs consisting of both safety and travel time. Safety is evaluated against potential risk of a crash involving an older driver (or a bicyclist) with other vehicles present on the road. To accomplish this, simple formulations are developed for safety indicators of streets and intersections, which are actually generic irrespective of the type of road user. Traffic attributes such as speed and density, driver attributes such as perception-reaction time and street attributes of length and tire-to-road friction coefficient are taken into account in building the safety indicators. Thus, the safety indicators do not necessarily require historical crash data which may or may not be available during path finding. Subsequently, a multi-objective shortest path algorithm is presented that identifies the best path (the non-inferior path) from amongst a set of selected safest paths with due considerations to travel time incurred on each. A simple application example of the proposed methodology is demonstrated on an existing street network system from the City of College Station, Texas. The contributions of this research are twofold – first, the safety indicators can be used by planners in determining high crash potential sites – streets and/or intersections – and second, the safety-based path finding methodology developed in this paper can be integrated with modern day route planning devices and tools in guiding older drivers and bicyclists within an Intelligent Transportation Systems framework.  相似文献   

6.
There are factors that impact car usage in urban areas, such as density, diversity and design, but there have been few studies that examine the relationship between street network factors and car usage at the city level (macro level). This paper focuses on this relationship by introducing urban street network variables, such as blocks per area, nodes per block and length of roads and motorways, as independent variables and the percentage of daily trips by private motorized modes as the dependent variable. The street network in this study includes interconnecting lines and points that present streets, roads, motorways, intersections and blocks. The strength of the relationship in this study is found using multiple linear regression. The findings of this research indicate that an increase in car usage is correlated with an increasing number of blocks per area, number of nodes per block and length of motorways. In addition, because the urban street network is the result of macro-scale planning decisions, considering this relationship can lead to better planning decisions.  相似文献   

7.
This paper presents a mathematical model to plan emergencies in a densely populated urban zone where a certain numbers of pedestrians depend on transit for evacuation. The proposed model features an integrated operational framework, which simultaneously guides evacuees through urban streets and crosswalks (referred to as “the pedestrian network”) to designated pickup points (e.g., bus stops), and routes a fleet of buses at different depots to those pick‐up points and transports evacuees to their destinations or safe places. In this level, the buses are routed through the so‐called “vehicular network.” An integrated mixed integer linear program that can effectively take into account the interactions between the aforementioned two networks is formulated to find the maximal evacuation efficiency in two networks. Because the large instances of the proposed model are mathematically difficult to solve to optimality, a two‐stage heuristic is developed to solve larger instances of the model. Results from hundreds of numerical examples analysis indicate that proposed heuristic works well in providing (near) optimal or feasibly good solutions for medium‐scale to large‐scale instances that may arise in real transit‐based evacuation situations in a much shorter amount of computational time compared with cplex (can find optimal/feasible solutions for only five instances within 3 hours of running). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
This paper assesses Danish experience in attempting to integrate traffic with its surroundings in existing areas. Rest and play areas, quiet roads with a 30 km/h speed limit, and major road schemes on urban shopping streets and through villages are all discussed; so too are policies seeking to create safe routes to school, the problems arising from the introduction of speed reduction measures on bus routes, and the merits of area‐wide as opposed to incremental approaches. Evaluations indicate that speed reductions to a maximum of 30 km/h are achievable on local roads, and that the quiet street approach represents a cost‐effective and popular means of achieving environmental improvements and safer, more liveable streets for residents. It is recommended as an appropriate model for Britain to follow. Incremental implementation risks being sub‐optimal in design terms but has distinct advantages in minimizing conflicts and enabling rapid implementation. Evaluations of shopping street and village schemes are incomplete but speed reductions and environmental gains have undoubtedly been achieved.  相似文献   

9.
Two continuum approximation (CA) optimization models are formulated to design city-wide transit systems at minimum cost. Transit routes are assumed to lie atop a city’s street network. Model 1 assumes that the city streets are laid out in ring-radial fashion. Model 2 assumes that the city streets form a grid. Both models can furnish hybrid designs, which exhibit intersecting routes in a city’s central (downtown) district and only radial branching routes in the periphery. Model 1 allows the service frequency and the route spacing at a location to vary arbitrarily with the location’s distance from the center. Model 2 also allows such variation but in the periphery only.The paper shows how to solve these CA optimization problems numerically, and how the numerical results can be used to design actual systems. A wide range of scenarios is analyzed in this way. It is found among other things that in all cases and for both models: (i) the optimal headways and spacings in the periphery increase with the distance from the center; and (ii) at the boundary between the central district and the periphery both, the optimal service frequency and line spacing for radial lines decrease abruptly in the outbound direction. On the other hand Model 1 is distinguished from Model 2 in that the former produces in all cases: (i) a much smaller central district, and (ii) a high frequency circular line on the outer edge of that central district.Parametric tests with all the scenarios further show that Model 1 is consistently more favorable to transit than Model 2. Cost differences between the two designs are typically between 9% and 13%, but can top 21.5%. This is attributed to the manner in which ring-radial networks naturally concentrate passenger’s shortest paths, and to the economies of demand concentration that transit exhibits. Thus, it appears that ring-radial street networks are better for transit than grids.To illustrate the robustness of the CA design procedure to irregularities in real street networks, the results for all the test problems were then used to design and evaluate transit systems on networks of the “wrong” type – grid networks were outfilled with transit systems designed with Model 1 and ring-radial networks designed with Model 2. Cost increased on average by only 2.7%. The magnitude of these deviations suggests that the proposed CA procedures can be used to design transit systems over real street networks when they are not too different from the ideal and that the resulting costs should usually be very close to those predicted.  相似文献   

10.
Dynamic speed harmonization has shown great potential to smoothen the flow of traffic and reduce travel time in urban street networks. The existing methods, while providing great insights, are neither scalable nor real-time. This paper develops Distributed Optimization and Coordination Algorithms (DOCA) for dynamic speed optimization of connected and autonomous vehicles in urban street networks to address this gap. DOCA decomposes the nonlinear network-level speed optimization problem into several sub-network-level nonlinear problems thus, it significantly reduces the problem complexity and ensures scalability and real-time runtime constraints. DOCA creates effective coordination in decision making between each two sub-network-level nonlinear problems to push solutions towards optimality and guarantee attaining near-optimal solutions. DOCA is incorporated into a model predictive control approach to allow for additional consensus between sub-network-level problems and reduce the computational complexity further. We applied the proposed solution technique to a real-world network in downtown Springfield, Illinois and observed that it was scalable and real-time while finding solutions that were at most 2.7% different from the optimal solution of the problem. We found significant improvements in network operations and considerable reductions in speed variance as a result of dynamic speed harmonization.  相似文献   

11.
This paper presents a Distributed-Coordinated methodology for signal timing optimization in connected urban street networks. The underlying assumption is that all vehicles and intersections are connected and intersections can share information with each other. The novelty of the work arises from reformulating the signal timing optimization problem from a central architecture, where all signal timing parameters are optimized in one mathematical program, to a decentralized approach, where a mathematical program controls the timing of only a single intersection. As a result of this distribution, the complexity of the problem is significantly reduced thus, the proposed approach is real-time and scalable. Furthermore, distributed mathematical programs continuously coordinate with each other to avoid finding locally optimal solutions and to move towards global optimality. We proposed a real-time and scalable solution technique to solve the problem and applied it to several case study networks under various demand patterns. The algorithm controlled queue length and maximized intersection throughput (between 1% and 5% increase compared to the actuated coordinated signals optimized in VISTRO) and reduced travel time (between 17% and 48% decrease compared to actuated coordinated signals) in all cases.  相似文献   

12.

Particular safety problems relate to traffic on local streets. Local Area Traffic Management (LATM) schemes are often implemented with the objective of counteracting these safety problems. One analytical difficulty in appraising the effectiveness of LATM in dealing with safety problems has been the ‘footloose’ nature of accident locations in a local street network. Seldom are there distinct ‘blackspot’ locations. An area‐wide approach is needed and the interaction between the system and arterial road network must be considered. The paper describes the development of a Safety Evaluation Method for Local Area Traffic Management (termed SELATM). It is a GIS‐based program for analysing accident patterns over time and the evaluation of the safety benefits of LATM schemes. The evaluation is perform at different network levels for various accident variables. The thrust of the program involved the integration of network data with data on accidents and the installed devices to generate summary accident statistics for the various network levels allowing for before and after comparison with a control area. This program as developed is applied to a LATM scheme at Enfield, a suburb in metropolitan Adelaide.  相似文献   

13.
In this paper, we develop an analytical model that aids decision-makers in designing a hybrid grid network that integrates a flexible demand responsive service with a fixed route service. The objective of the model is to determine the optimal number of zones in an area where each zone is served by a number of on-demand vehicles. The function of the on-demand vehicles is to transfer passengers to a fixed route line if the destination is to a different zone or to its final destination if it is within the same zone.  相似文献   

14.
This paper is the second of a pair of papers discussing two main themes concerning dense network modelling. These themes are: (1) the changing nature of traffic management technology and the underlying objectives behind traffic management practice, and (2) the use of measures of network reliability in models, especially as an element of the evaluation of alternative network configurations. This paper develops and applies the second theme, the use of network reliability concepts in the evaluation of traffic networks, through consideration of variations in travel times, distinction between local street and arterial road networks, and the definition and application of a set of reliability indices that may be used to study different trip movements in a network. It indicates how these indices may be used in appraising different traffic management plans for a dense network of local streets and arterial roads, using a case study application.  相似文献   

15.
The dynamic vehicle allocation problem arises when a motor carrier must simultaneously and in real time coordinate the dispatching of vehicles from one region to the next all over the country. The decision to send a vehicle loaded or empty from one region to the next, arriving in the destination region at some point in the future, must anticipate the downstream impacts of the decision. The consequences of another load in a particular region at some point in the future, however, are highly uncertain. A simple methodology is proposed which calculates approximately the marginal value of an additional vehicle in each region in the future. This information is then used to generate a standard pure network which can be efficiently optimized to give dispatching decisions for today.  相似文献   

16.
The development and testing of a traffic control scheme for the high density sectors of the Manhattan Central Business District (CBD) is described. The proposed control scheme is based on “spillback avoidance” approach rather than the conventional “progressive movement” approach. This plan is characterized by signal splits which reflect the need to service the growing east-west cross street demands in the direction of travel, yet provide near optimal offsets and splits to the north-south arterial traffic. Under this scheme, the signal offsets for the cross streets exhibit a “backward progression” which is optimal (or near optimal) for streets with long queues and slow discharge headways. Netsim was executed to simulate traffic operations with the existing and proposed signal timing patterns on one of the test networks. Comparison of the results indicated that the number and duration of spillback blockages were markedly decreased, with a concommitant reduction in vehicle travel time and number of stops, coupled with an increase in vehicle trips serviced. A before-and-after field study yielded similar results, with the new control scheme providing a 20% reduction in overall travel time.  相似文献   

17.
The methodology presented here seeks to optimize bus routes feeding a major intermodal transit transfer station while considering intersection delays and realistic street networks. A model is developed for finding the optimal bus route location and its operating headway in a heterogeneous service area. The criterion for optimality is the minimum total cost, including supplier and user costs. Irregular and discrete demand distributions, which realistically represent geographic variations in demand, are considered in the proposed model. The optimal headway is derived analytically for an irregularly shaped service area without demand elasticity, with non‐uniformly distributed demand density, and with a many‐to‐one travel pattern. Computer programs are designed to analyze numerical examples, which show that the combinatory type routing problem can be globally optimized. The improved computational efficiency of the near‐optimal algorithm is demonstrated through numerical comparisons to an optimal solution obtained by the exhaustive search (ES) algorithm. The CPU time spent by each algorithm is also compared to demonstrate that the near‐optimal algorithm converges to an acceptable solution significantly faster than the ES algorithm.  相似文献   

18.
An experiment tested whether physical disorder affected low to moderate income African–American children’s choice of street to walk on and their parents’ choice of a street for them to walk on. The experiment used an innovative desktop simulation in which 32 fourth and fifth grade African–American children and 30 parents viewed and explored pairs of virtual walk-through streets manipulated on disorder (across three contexts and two other street and sidewalk characteristics) and picked from each pair the one to walk on (child) or for the child to walk on (parent). Each participant was asked to report the reasons for the choices. The analysis revealed that children and their parents were more likely to walk (or have the child walk) on streets lower in disorder. Reported reasons for choices confirmed the importance of physical disorder in affecting walking choices. Low-cost improvements in order may make streets more desirable for recreational walking.  相似文献   

19.
Yuen  Belinda  Chor  Chin Hoong 《Transportation》1998,25(3):225-242
A fair amount of literature pertaining to pedestrian streets has been produced but for the most part it is on the American and European developments. There has been surprisingly little published research on pedestrian street development in Asia. The purpose of this paper, therefore, is to examine pedestrian streets in Asia, using the city-state of Singapore as a case study. Since the mid-1980s, pedestrian streets have been adopted as a policy in the conservation and planning of Singapore's city centre. The resulting pedestrian streets came in many forms, from a single pedestrian-only street to a whole precinct of several streets.  相似文献   

20.
Electric travelling appears to dominate the transport sector in the near future due to the needed transition from internal combustion vehicles (ICV) towards Electric Vehicles (EV) to tackle urban pollution. Given this trend, investigation of the EV drivers’ travel behaviour is of great importance to stakeholders including planners and policymakers, for example in order to locate charging stations. This research explores the Battery Electric Vehicle (BEV) drivers route choice and charging preferences through a Stated Preference (SP) survey. Collecting data from 505 EV drivers in the Netherlands, we report the results of estimating a Mixed Logit (ML) model for those choices. Respondents were requested to choose a route among six alternatives: freeways, arterial ways, and local streets with and without fast charging. Our findings suggest that the classic route attributes (travel time and travel cost), vehicle-related variables (state-of-charge at the origin and destination) and charging characteristics (availability of a slow charging point at the destination, fast charging duration, waiting time in the queue of a fast-charging station) can influence the BEV drivers route choice and charging behaviour significantly. When the state-of-charge (SOC) at the origin is high and a slow charger at the destination is available, routes without fast charging are likely to be preferred. Moreover, local streets (associated with slow speeds and less energy consumption) could be preferred if the SOC at the destination is expected to be low while arterial ways might be selected when a driver must recharge his/her car during the trip via fast charging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号