首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于广州洛溪大桥拓宽工程现场监测数据,对旋挖钻孔时临近隧道结构的变形进行分析,以研究旋挖钻孔成桩技术对临近地铁隧道结构的影响。该工程中,当桥梁桩基距离地铁盾构边线超过7 m时,采用旋挖钻机成孔施工方法;当桩基与地铁盾构边线的距离减小至约3.0 m时,采用旋挖钻机与全套管全回转钻机联合成孔施工方法。现场监测结果表明,桩基施工过程中,地铁隧道监测点平行于隧道中轴线方向的累计位移最大值为2.41 mm,垂直于隧道中轴线方向的累计位移最大值为1.94 mm,垂直于地面方向的累计位移最大值为2.02 mm,均在合理范围内。地铁左、右轨道差异沉降值存在超过2 mm但小于3 mm的现象,道床平顺度也存在个别监测值超过2 mm/10 m但小于3 mm/10 m的现象。本工程旋挖钻孔施工方法对地铁隧道变形影响较小,但左右轨道差异沉降与道床平顺度应该受到重点监测。  相似文献   

2.
针对常规全套管灌注桩机施工作业无法满足4 m以下低净空条件的问题,研制出一种能够解决因施工空间的限制导致无法进行全套管灌注桩施工问题的低净空全回转全套管灌注桩机,并进行了数值模拟和试桩施工影响分析。①通过改变钻进和取土方式,降低了设备机架高度及施工作业高度,实现了低净空全套管灌注桩施工作业;②通过试桩过程中孔隙水压力测试、深层水平位移监测、地表沉降观测和地下水位监测,明确了低净空全套管灌注桩施工对周围地层的影响范围;③通过数值模拟分析施工扰动,明确了实际下穿工程中低净空隔离桩的施工对既有桥梁结构的影响。研究结果表明:通过钻进和取土系统的结构创新,低净空全套管灌注桩机可以实现桐泾路北延隧道工程3.6 m极限高度下的隔离灌注桩的施工,且隔离桩施工基本不影响既有高铁桥梁结构的稳定与安全性。  相似文献   

3.
合肥膨胀土地层浅埋双洞地铁隧道施工参数优化研究   总被引:1,自引:0,他引:1  
为分析膨胀土特殊地层对双洞地铁隧道结构的影响,并对浅埋双洞地铁隧道施工参数进行优化研究,提出运用FLAC3D热力场-应力场耦合方法,利用标定设置热膨胀系数等效模拟膨胀土地层吸水膨胀、失水收缩过程。研究结果表明: 1)数值模拟结果经与现场实测值对比验证,该方法正确、合理; 2)当两隧道净距大于1.5倍洞径时,最大地表沉降值为28.82 mm,衬砌结构内力增量小于20%,双洞中柱围岩塑性区不贯通; 3)当双洞掌子面距离大于40 m时,最大地表沉降值小于30 mm,拱顶沉降增量小于10%; 当双洞掌子面距离大于30 m时,双洞隧道中柱围岩塑性区不贯通; 4)建议双洞地铁隧道净距大于1.5倍洞径、双洞掌子面距离大于40 m。  相似文献   

4.
为了探究双线平行盾构下穿古建筑时的合理净距取值,依托西安地铁4号线区间双线盾构下穿和平门城墙及护城河工程,通过建立三维弹塑性模型,对双线隧道在不同净距工况下地表沉降、围岩塑性应变及管片变形等规律进行分析。结果表明:双线盾构机械施工通过后,右线隧道轴线的地表沉降值大于左线隧道轴线地表沉降值;随着净距的增加,沉降槽宽度逐渐加宽,而地表沉降最大值有明显减小;管片位移整体受净距影响较小。研究成果可为黄土地区双线地铁隧道的净距优化提供理论参考。  相似文献   

5.
吴静  吴立  左清军 《公路工程》2015,(2):48-50,63
某大断面隧道从地铁下方穿过,且地表为城市一级主干道,隧道的开挖会对地铁衬砌及地表道路产生影响,隧道与地铁之间的净距控制非常关键。分别探讨了在不同净距下隧道开挖之后地铁衬砌位移及地表沉降位移,并参考一定的标准,并得出隧道与地铁之间最小安全距离。  相似文献   

6.
樊夏敏 《路基工程》2023,(2):120-123
依托某新建铁路邻近运营高速铁路路基工程,对软土地区的桩板结构形式、变形计算、自动监测系统、现场低净空桩基设备进行研究;邻近运营高铁施工受接触网回流线及倾覆侵限等条件限制,必须采用低净空设备;对套管回转钻机、循环回旋钻机进行改造后可满足狭小空间的施工要求;套管回转下钻过程中,需在桩头灌注泥浆润滑;套管内取土工艺采用正循环钻机取土工效更高;为软土地区邻近运营无砟轨道高速铁路路基设计、施工提供相关经验和建议。  相似文献   

7.
采用二维弹塑性数值计算方法,对小净距隧道拱顶位移、水平收敛进行数值模拟计算,研究围岩级别、净距、开挖方法对隧道变形的影响,揭示小净距隧道洞周变形特征。研究结论可为小净距隧道的设计、施工提供一定的指导。  相似文献   

8.
以山西太原地铁2号线双线盾构隧道近距离穿越高架桥桩基为研究对象,建立三维有限元模型,考虑土仓压力、盾壳与土层的摩擦力、注浆压力的影响,模拟盾构隧道开挖掘进过程,分析桩基变形规律。结果表明:双线盾构隧道开挖完后,近接桩基承台发生的竖向位移为-3.21 mm;桩基竖向位移和垂直隧道开挖方向的水平位移,主要发生在隧道开挖距桩前10 m和桩后10 m之间,沿隧道开挖方向的水平位移,主要发生在隧道开挖至距桩前20 m和桩后20 m之间;垂直隧道开挖方向的水平位移和沿隧道开挖方向的水平位移最大值均出现在隧道掘进通过桩基过程中,分别达9.47 mm和-11.92 mm,均出现在隧道中心高度处;在隧道掘进过程中需采取桩基保护措施。  相似文献   

9.
以某高架桥快速化改造工程为研究对象,利用规范中m法来模拟桩土之间的关系,并通过MIDAS有限元分析软件建立全桥数值模型,分析地铁隧道对桥梁桩基的影响,并为桥梁桩基设计提供了合理的设计依据。模型结果表明,当地铁隧道与既有桥梁桩基的水平距离保持一定时,地铁隧道埋深存在一个临界值,当地铁隧道埋深为此临界值时地铁隧道施工引起的桩顶水平位移最大;当地铁隧道开挖在上层较软弱的土层中时,桩身变形较大。根据模型结果,提出合理的桩基设计注意事项。  相似文献   

10.
青岛市某中水管线完善工程采用水平定向钻施工方法,施工采用分级扩孔,管线邻近青岛地铁2号线辽阳东路站-东韩站区间,管线与地铁区间结构外边线最小水平距离4.5 m,区间地铁现已正常运营,水平定向钻施工可能会引起地层移动和变形,导致青岛地铁2号线辽阳东路站-东韩站区间结构随之发生移动和变形。基于此,采用数值模拟方法,建立仿真模型,计算分析水平定向钻施工过程中,不同孔径条件下,泥浆压力和管线与隧道的水平净距对既有隧道变形的影响规律。计算分析得:水平定向钻开挖后,该地铁区间结构水平位移0.967 mm,横向高差0.152 mm,水平定向钻开挖对隧道的影响在安全可控范围内。  相似文献   

11.
姜伟 《隧道建设》2018,38(Z2):53-59
为研究地铁隧道近距离穿越桥梁施工过程中的变形特点,基于深圳地铁5号线南延段某区间隧道下穿兴海大道立交桥工程,采用FEM方法对1#桥墩性状影响进行数值模拟分析。结果表明: 1)同侧桥梁上部结构沉降规律相同,最大值对应右线隧道正上方; 2)到隧道开挖面距离越小,桥梁结构受影响程度越大; 3)当开挖面到桥桩距离L=7D(跨径)时,桥桩开始受到施工影响; 4)当L=3D时,桥桩沉降速率显著增大; 5)隧道上方桥桩竖向沉降变形最大,且沉降随埋深增大而增大; 6)桥桩上部水平位移方向指向隧道,桥桩下部水平位移方向相反,且横向位移极值随桥桩到隧道距离增大而减小。采用层次分析法提出隧道施工过程中桥梁变形控制标准,并对减小沉降变形措施提出建议。隧道顺利穿越城市立交桥,验证了分析结果的合理性。  相似文献   

12.
赵俊  刘维  甘鹏路 《路基工程》2013,(4):97-102
以杭州地铁隧道二号线某区间盾构下穿桩基建筑为研究对象,通过数值模拟方法分析了盾构隧道布置位置对邻近桩基变形的影响,并与土层变形传统预测公式进行比较。研究结果表明:当隧道位于桩基正下方时,隧道开挖造成上部桩基及周边土体较大沉降;随着隧道和桩基水平距离增加,隧道开挖对桩基和周边土体影响逐渐减小;当水平距离与桩径的比值(L/D)大于6时,隧道开挖对桩基及周边土体影响较小,数值模拟结果和传统公式预测值接近。  相似文献   

13.
利用有限元分析软件建立桥梁基础及双孔地铁的模型,模拟地铁盾构的施工工况。研究盾构施工前后地铁隧道、周边土体变形趋势及其对地铁顺穿桥梁的桩基础轴力、弯矩、水平变形及沉降的影响。分析结果表明:隧道施工造成隧道上部土体沉降,下部土体隆起,隧道呈现椭圆形;其顺穿桥梁桩基轴力、弯矩增加幅度较大,桩基在地铁隧道深度以上竖向沉降,在隧道深度下局部桩体隆起,桩身位移呈现“3”字形,最大位移位于隧道中心标高与隧道底标高之间。  相似文献   

14.
《公路》2017,(3)
针对地铁盾构隧道近接桩基施工情况,利用有限元软件,在考虑前方土体受到刀盘施工扰动、土仓压力、盾尾注浆作用等施工参数下,对盾构隧道动态施工中正上方桩基的承载性能进行了数值计算。结果表明,盾构施工对桩基沉降和承载力损失较大的区域主要集中在刀盘距桩轴线+6~-12m之间;盾构正下方穿越既有桩基时,存在一个特定安全施工距离,约为3m;盾构隧道施工前桩基承受的荷载不同,盾构施工过程对桩基承载力的影响也就会不同。  相似文献   

15.
吴红博  周传波  蒋楠  高坛 《隧道建设》2019,39(2):219-226
为分析圆砾地层双线地铁隧道分别采用泥水和土压平衡盾构施工时的地层变形特征,以南宁地铁3号线东葛路站-滨湖路站区间盾构施工工程为背景,采用现场监测数据分析2种盾构施工时的地表横向沉降特征和监测点纵向沉降历程特征。利用FLAC3D软件对2种盾构工法进行简化模拟,验证模拟方法的可行性; 设计双线地铁隧道分别采用土压平衡盾构和泥水平衡盾构、全部采用泥水平衡盾构、全部采用土压平衡盾构3种工况的模拟方案,研究3种工况下的地层变形特征。研究结果表明: 1)双线地铁隧道采用2种类型盾构施工时,地层沉降曲线偏向土压平衡盾构施工的隧道一侧; 采用同种类型盾构施工时,地层距离隧道越近,沉降曲线呈“W”特征越明显; 2)双线地铁隧道采用土压平衡盾构施工时各地层沉降较大,地表横向沉降影响范围约50 m; 采用泥水平衡盾构施工时各地层沉降相对较小,地表横向沉降影响范围约30 m; 3)3种工况下,双线地铁隧道采用土压平衡盾构施工时引起的地表水平位移最大。  相似文献   

16.
为研究盾构隧道下穿临近铁路桥梁过程中隧道埋深对既有桥梁沉降变形及水平位移变化的影响,以武汉地铁3号线区间盾构穿越铁路桥梁工程为依托,利用有限元软件ANSYS对不同隧道埋深(2D、2.5D、3D(D为隧道直径))下桥梁的梁体结构、轨道线路及桩基位移等进行对比分析,并结合现场数据进行验证。研究结果表明: 1)随着隧道埋深的增大会引起桩基、梁体及钢轨等结构竖向位移的增大,当隧道埋深为18 m时,墩台最大沉降超过了限制值; 2)隧道埋深分别为12、15、18 m时,桥梁墩台及梁体结构均表现出以沉降为主的变形,而水平位移变化幅度较小; 3)在满足地表沉降限值的条件下可适当减少隧道埋深,以控制隧道开挖引起的上部桥梁、钢轨等结构物变形。  相似文献   

17.
针对卵石地层小净距隧道围岩整体性与稳定性差、施工中易坍塌、围岩相互扰动大的问题,通过FLAC 3D数值模拟和现场监测,对卵石层小净距隧道左右洞合理净距和先后行洞掌子面安全纵向间距进行了研究。得到如下结论: 1)当净距不大于6 m时,隧道地表沉降槽呈“V形”,沉降最大点位于中夹岩顶部;随着净距大于6 m,隧道拱顶部位地表沉降逐渐超过中夹岩顶部,地表沉降槽呈 “W形”。2)当2洞间净距不大于6 m(约1倍洞跨)时,2洞开挖后围岩压力叠加效应明显,极易发生失稳;当隧道净距大于18 m时,可按分离式隧道进行设计; 3)随着先后行洞间掌子面纵向距离的增加,后行洞施工对先行洞的影响逐渐减少,当纵向间距达到30 m(4.6倍洞跨)时,这种影响基本可以不予考虑。  相似文献   

18.
为了研究施工工法对浅埋软岩小净距隧道变形的影响,通过工程现场实测和MIDAS GTS数值分析研究了小净距隧道地表沉降,拱顶沉降,水平收敛和仰拱隆起的变化规律,研究结果表明:双侧壁导坑法对于软岩小净距隧道的地表沉降控制显著;对于水平收敛量,双侧壁导坑法变化量最小,且先行隧道和后行隧道水平收敛的结果基本相同;其他2种工法下的仰拱隆起量是双侧壁导坑法隆起量的5倍以上,并且这2种方法的仰拱隆起规律基本相同;模拟结果与现场实测数据较吻合,且都满足工程监测要求,可以为类似的工程提供借鉴。  相似文献   

19.
福平铁路岱岭段斜下穿一栋6层宿舍楼,楼房基础形式为桩径0.8m的人工挖孔灌注桩和柱下独立基础,桩长4~6m,隧道拱顶距最近桩基底端约12m,为保障楼房安全,针对掘进导致的桩基沉降变形开展模拟研究。结果表明,随开挖距离的逼近,隧道拱顶位移与桩基沉降量逐渐增大,开挖断面处于建筑最下方时增长速率最快,桩基产生不均匀沉降,其中最大沉降值为11.6mm。通过验算确定该沉降不致造成楼房结构性损伤。  相似文献   

20.
许桂生 《中外公路》2019,39(1):185-189
依托某实际工程,基于Abaqus软件建立桥-隧三维数值计算模型,对城市公路隧道近接桥梁桩基段施工进行模拟,得到大跨浅埋暗挖公路隧道施工对地层、桥梁桩基变形的影响规律,并研究高压旋喷桩加固措施对桥梁桩基变形的影响,结合现场实测数据,分析加固措施对隧道施工安全的控制效果。结果表明:软弱地层隧道施工对桥梁桩基变形影响较大,靠近隧道两侧桩基变形明显大于中部桩基,最大桩基差异沉降值远超规范允许值,需采取有效变形控制措施;增大高压旋喷桩加固参数(加固深度和宽度)对减小桥梁桩基位移效果较为明显,但加固宽度和深度都存在"极限值"。考虑安全与经济,得到工程合理的加固宽度为2.5m,合理加固深度为25m;隧道施工完成时桥梁桩基最大差异沉降约2.2mm,桥梁桩基变形在安全可控范围内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号